Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53859
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor徐宏民
dc.contributor.authorChing-Hsuan Liuen
dc.contributor.author劉璟萱zh_TW
dc.date.accessioned2021-06-16T02:31:37Z-
dc.date.available2015-07-31
dc.date.copyright2015-07-31
dc.date.issued2015
dc.date.submitted2015-07-29
dc.identifier.citation[1] Y. Cao, C. Wang, L. Zhang, and L. Zhang. Edgel index for large-scale sketch-based image search. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 761–768. IEEE, 2011.
[2] Y. Cao, H. Wang, C. Wang, Z. Li, L. Zhang, and L. Zhang. Mindfinder: interactive sketch-based image search on millions of images. In Proceedings of the international conference on Multimedia, pages 1605–1608. ACM, 2010.
[3] M. Eitz, K. Hildebrand, T. Boubekeur, and M. Alexa. An evaluation of descriptors for large-scale image retrieval from sketched feature lines. Computers & Graphics, 34(5):482–498, 2010.
[4] M. Eitz, K. Hildebrand, T. Boubekeur, and M. Alexa. Sketch-based image retrieval: Benchmark and bag-of-features descriptors. IEEE Transactions on Visualization and Computer Graphics, 17(11):1624–1636, 2011.
[5] X.-S. Hua, L. Yang, M. Ye, K. Wang, Y. Rui, and J. Li. Clickture: A large-scale real-world image dataset. Technical report, Microsoft Research Technical Report MSR-TR-2013–75, 2013.
[6] S. Parui and A. Mittal. Similarity-invariant sketch-based image retrieval in large databases. In Computer Vision–ECCV 2014, pages 398–414. Springer, 2014.
[7] Z. Sun, C. Wang, L. Zhang, and L. Zhang. Query-adaptive shape topic mining for hand-drawn sketch recognition. In Proceedings of the 20th ACM international conference on Multimedia, pages 519–528. ACM, 2012.
[8] Z. Sun, C. Wang, L. Zhang, and L. Zhang. Sketch2tag: automatic hand-drawn sketch recognition. In Proceedings of the 20th ACM international conference on Multimedia, pages 1255–1256. ACM, 2012.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53859-
dc.description.abstract由於觸控式螢幕裝置日趨盛行,利用手繪草圖來檢索圖像已然成為一種趨勢。手繪草圖可以簡單地表達出一些複雜的使用者意圖,如物體的形狀。然而,草圖有時會因為使用者繪畫技巧的差異或不同種類物體形狀的相似而無法明確表達出使用者意圖。儘管添加文字查詢來增加語意資訊可以幫助去除草圖的模糊性,但這需要花費大量的人力和時間為所有資料庫圖片標記文字標籤。我們提出了一個利用文字(words)與視覺字(visual words)的共現(co-occurrence)關係直接針對文字和圖像的關係進行建模的方法,在所有資料庫圖片都沒有文字標籤的情況下,仍然可以加入文字查詢來輔助傳統的基於草圖的圖像搜尋(sketch-based image retrieval)改善其搜尋結果。實驗結果顯示,我們的方法確實可以幫助基於草圖的圖像搜尋得到更相關的搜尋結果,因為它確實從文字與視覺字的共現關係中學習到了其中的語意。zh_TW
dc.description.abstractAs the increasing popularity of touch-screen devices, retrieving images by hand-drawn sketch has become a trend. Human sketch can easily express some complex user intention such as the object shape. However, sketches are sometimes ambiguous due to different drawing styles and inter-class object shape ambiguity. Although adding text queries as semantic information can help removing the ambiguity of sketch, it requires a huge amount of efforts to annotate text tags to all database images. We propose a method directly model the relationship between text and images by the co-occurrence relationship between words and visual words, which improves traditional sketch-based image retrieval (SBIR), provides a baseline performance and obtains more relevant results in the condition that all images in database do not have any text tag. Experimental results show that our method really can help SBIR to get better retrieval result since it indeed learned semantic meaning from the ``word-visual word' (W-VW) co-occurrence relationship.en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:31:37Z (GMT). No. of bitstreams: 1
ntu-104-R02922003-1.pdf: 1373370 bytes, checksum: f99f6db6c92e2bbf8349a18f99a04752 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iv
Abstract v
1 Introduction 1
2 Related Work 3
3 Technical Details 4
3.1 Sketch to Image 4
3.2 Text to Image 5
3.3 Late Fusion 8
4 Experiment Results 9
4.1 Dataset 9
4.2 Evaluation 10
5 Conclusion 13
Bibliography 14
dc.language.isoen
dc.subject共現模型zh_TW
dc.subject基於草圖的圖像搜尋zh_TW
dc.subjectco-occurrence modelen
dc.subjectsketch-based image retrievalen
dc.title利用文字與視覺字的共現關係幫助基於草圖的圖像搜尋zh_TW
dc.titleExploiting Word and Visual Word Co-occurrence for Sketch-based Image Retrievalen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳祝嵩,余能豪,葉梅珍
dc.subject.keyword基於草圖的圖像搜尋,共現模型,zh_TW
dc.subject.keywordsketch-based image retrieval,co-occurrence model,en
dc.relation.page15
dc.rights.note有償授權
dc.date.accepted2015-07-30
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
ntu-104-1.pdf
  Restricted Access
1.34 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved