請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53834
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王一中(I-Jong Wong) | |
dc.contributor.author | Chia-Han Tsai | en |
dc.contributor.author | 蔡佳翰 | zh_TW |
dc.date.accessioned | 2021-06-16T02:30:54Z | - |
dc.date.available | 2020-09-25 | |
dc.date.copyright | 2015-09-25 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-07-30 | |
dc.identifier.citation | Ahlquist, D.A., Skoletsky, J.E., Boynton, K.A., Harrington, J.J., Mahoney, D.W., Pierceall, W.E., Thibodeau, S.N., and Shuber, A.P. (2000). Colorectal cancer screening by detection of altered human DNA in stool: feasibility of a multitarget assay panel. Gastroenterology 119, 1219-1227. Alexandrov, L.B., Nik-Zainal, S., Wedge, D.C., Aparicio, S.A.J.R., Behjati, S., Biankin, A.V., Bignell, G.R., Bolli, N., Borg, A., Borresen-Dale, A.-L., et al. (2013). Signatures of mutational processes in human cancer. Nature 500, 415-421. Anguria, P., Kitinya, J., Ntuli, S., and Carmichael, T. (2014). The role of heredity in pterygium development. International Journal of Ophthalmology 7, 563-573. Anguria, P., Ntuli, S., Interewicz, B., and Carmichael, T. (2012). Traditional eye medication and pterygium occurrence in Limpopo Province. S Afr Med J 102, 687-690. Aragane, Y., Schwarz, A., Luger, T.A., Ariizumi, K., Takashima, A., and Schwarz, T. (1997). Ultraviolet light suppresses IFN-gamma-induced IL-7 gene expression in murine keratinocytes by interfering with IFN regulatory factors. The Journal of Immunology 158, 5393-5399. Bamshad, M.J., Ng, S.B., Bigham, A.W., Tabor, H.K., Emond, M.J., Nickerson, D.A., and Shendure, J. (2011). Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet 12, 745-755. Bertrand, F.E., McCubrey, J.A., Angus, C.W., Nutter, J.M., and Sigounas, G. (2014). NOTCH and PTEN in prostate cancer. Advances in biological regulation 56, 51-65. Biesecker, L.G., and Green, R.C. (2014). Diagnostic Clinical Genome and Exome Sequencing. New England Journal of Medicine 370, 2418-2425. Bojesen, S.E., and Nordestgaard, B.G. (2008). The common germline Arg72Pro polymorphism of p53 and increased longevity in humans. Cell cycle (Georgetown, Tex) 7, 158-163. Chang-Claude, J., Ambrosone, C.B., Lilla, C., Kropp, S., Helmbold, I., von Fournier, D., Haase, W., Sautter-Bihl, M.L., Wenz, F., Schmezer, P., et al. (2009). Genetic polymorphisms in DNA repair and damage response genes and late normal tissue complications of radiotherapy for breast cancer. British journal of cancer 100, 1680-1686. Chao, S.C., Hu, D.N., Yang, P.Y., Lin, C.Y., Nien, C.W., Yang, S.F., and Roberts, J.E. (2013). Ultraviolet-A irradiation upregulated urokinase-type plasminogen activator in pterygium fibroblasts through ERK and JNK pathways. Investigative ophthalmology visual science 54, 999-1007. Chen, C.-L., Lai, C.-H., Wu, P.-L., Wu, P.-C., Chou, T.-H., and Weng, H.-H. The epidemiology of patients with pterygium in southern Taiwanese adults: The Chiayi survey. Taiwan Journal of Ophthalmology 3, 58-61. Chen, C.-L., Lai, C.-H., Wu, P.-L., Wu, P.-C., Chou, T.-H., and Weng, H.-H. (2013). The epidemiology of patients with pterygium in southern Taiwanese adults: The Chiayi survey. Taiwan Journal of Ophthalmology 3, 58-61. Chen, P.L., Yeh, K.T., Tsai, Y.Y., Koeh, H., Liu, Y.L., Lee, H., and Cheng, Y.W. (2010). XRCC1, but not APE1 and hOGG1 gene polymorphisms is a risk factor for pterygium. Mol Vis 16, 991-996. Chin, L., Hahn, W.C., Getz, G., and Meyerson, M. (2011). Making sense of cancer genomic data. Genes development 25, 534-555. Cimpean, A.M., Sava, M.P., and Raica, M. (2013). DNA damage in human pterygium: One-shot multiple targets. Molecular Vision 19, 348-356. Cui, D., Pan, Z., Zhang, S., Zheng, J., Huang, Q., and Wu, K. (2011). Downregulation of c‐Myc in pterygium and cultured pterygial cells. Clinical experimental ophthalmology 39, 784-792. de Boer, J., and Hoeijmakers, J.H. (2000). Nucleotide excision repair and human syndromes. Carcinogenesis 21, 453-460. Defazio, G., Martino, D., Aniello, M.S., Masi, G., Abbruzzese, G., Lamberti, S., Valente, E.M., Brancati, F., Livrea, P., and Berardelli, A. (2006). A family study on primary blepharospasm. Journal of neurology, neurosurgery, and psychiatry 77, 252-254. Detorakis, E.T., Drakonaki, E.E., and Spandidos, D.A. (2000). Molecular genetic alterations and viral presence in ophthalmic pterygium. International journal of molecular medicine 6, 35-41. Detorakis, E.T., Sourvinos, G., Tsamparlakis, J., and Spandidos, D.A. (1998). Evaluation of loss of heterozygosity and microsatellite instability in human pterygium: clinical correlations. The British journal of ophthalmology 82, 1324-1328. Detorakis, E.T., and Spandidos, D.A. (2009). Pathogenetic mechanisms and treatment options for ophthalmic pterygium: Trends and perspectives (Review). International journal of molecular medicine 23, 439-447. Detorakis, E.T., Zaravinos, A., and Spandidos, D.A. (2010). Growth factor expression in ophthalmic pterygia and normal conjunctiva. International journal of molecular medicine 25, 513-516. Di Girolamo, N., Kumar, R.K., Coroneo, M.T., and Wakefield, D. (2002). UVB-mediated induction of interleukin-6 and-8 in pterygia and cultured human pterygium epithelial cells. Investigative Ophthalmology and Visual Science 43, 3430-3437. Di Girolamo, N., Wakefield, D., and Coroneo, M.T. (2006). UVB-mediated induction of cytokines and growth factors in pterygium epithelial cells involves cell surface receptors and intracellular signaling. Investigative ophthalmology visual science 47, 2430-2437. Dreier, B., Raghunathan, V.K., Russell, P., and Murphy, C.J. (2012). Focal adhesion kinase knockdown modulates the response of human corneal epithelial cells to topographic cues. Acta biomaterialia 8, 4285-4294. Essex, R.W., Snibson, G.R., Daniell, M., and Tole, D.M. (2004). Amniotic membrane grafting in the surgical management of primary pterygium. Clinical Experimental Ophthalmology 32, 501-504. Forbes, S.A., Bhamra, G., Bamford, S., Dawson, E., Kok, C., Clements, J., Menzies, A., Teague, J.W., Futreal, P.A., and Stratton, M.R. (2008). The Catalogue of Somatic Mutations in Cancer (COSMIC). Current protocols in human genetics / editorial board, Jonathan L Haines [et al] CHAPTER, Unit-10.11. Goh, G., and Choi, M. (2012). Application of whole exome sequencing to identify disease-causing variants in inherited human diseases. Genomics informatics 10, 214-219. Golu, T., Mogoanta, L., Streba, C.T., Pirici, D.N., Malaescu, D., Mateescu, G.O., and Mutiu, G. (2011). Pterygium: histological and immunohistochemical aspects. Romanian journal of morphology and embryology = Revue roumaine de morphologie et embryologie 52, 153-158. Hecht, F., and Shoptaugh, M.G. (1990). Winglets of the eye: dominant transmission of early adult pterygium of the conjunctiva. Journal of medical genetics 27, 392-394. Hoischen, A., van Bon, B.W.M., Gilissen, C., Arts, P., van Lier, B., Steehouwer, M., de Vries, P., de Reuver, R., Wieskamp, N., Mortier, G., et al. (2010). De novo mutations of SETBP1 cause Schinzel-Giedion syndrome. Nat Genet 42, 483-485. Holt, R.A., and Jones, S.J. (2008). The new paradigm of flow cell sequencing. Genome research 18, 839-846. Hou, A., Lan, W., Law, K.P., Khoo, S.C., Tin, M.Q., Lim, Y.P., and Tong, L. (2014). Evaluation of global differential gene and protein expression in primary Pterygium: S100A8 and S100A9 as possible drivers of a signaling network. PloS one 9, e97402. Huang, Y.-F., Chen, S.-C., Chiang, Y.-S., Chen, T.-H., and Chiu, K.-P. (2012). Palindromic sequence impedes sequencing-by-ligation mechanism. BMC Systems Biology 6, S10. Jaworski, C.J., Aryankalayil-John, M., Campos, M.M., Fariss, R.N., Rowsey, J., Agarwalla, N., Reid, T.W., Dushku, N., Cox, C.A., Carper, D., et al. (2009). Expression analysis of human pterygium shows a predominance of conjunctival and limbal markers and genes associated with cell migration. Molecular Vision 15, 2421-2434. John-Aryankalayil, M., Dushku, N., Jaworski, C.J., Cox, C.A., Schultz, G., Smith, J.A., Ramsey, K.E., Stephan, D.A., Freedman, K.A., Reid, T.W., et al. (2006). Microarray and protein analysis of human pterygium. Mol Vis 12, 55-64. Kau, H.C., Tsai, C.C., Hsu, W.M., Liu, J.H., and Wei, Y.H. (2004). Genetic polymorphism of hOGG1 and risk of pterygium in Chinese. Eye (London, England) 18, 635-639. Kau, H.C., Tsai, C.C., Lee, C.F., Kao, S.C., Hsu, W.M., Liu, J.H., and Wei, Y.H. (2006). Increased oxidative DNA damage, 8-hydroxydeoxy- guanosine, in human pterygium. Eye (London, England) 20, 826-831. Kim, S.W., Lee, J., Lee, B., and Rhim, T. (2014). Proteomic analysis in pterygium; upregulated protein expression of ALDH3A1, PDIA3, and PRDX2. Mol Vis 20, 1192-1202. Klumpp, J., Fouts, D.E., and Sozhamannan, S. (2012). Next generation sequencing technologies and the changing landscape of phage genomics. Bacteriophage 2, 190-199. Kria, L., Ohira, A., and Amemiya, T. (1996). Immunohistochemical localization of basic fibroblast growth factor, platelet derived growth factor, transforming growth factor-beta and tumor necrosis factor-alpha in the pterygium. Acta histochemica 98, 195-201. Lee, C.-Y., Chiu, Y.-C., Wang, L.-B., Kuo, Y.-L., Chuang, E.Y., Lai, L.-C., and Tsai, M.-H. (2013). Common applications of next-generation sequencing technologies in genomic research. Translational Cancer Research 2, 33-45. Lee, S.B., Li, D.Q., Tan, D.T., Meller, D.C., and Tseng, S.C. (2000). Suppression of TGF-beta signaling in both normal conjunctival fibroblasts and pterygial body fibroblasts by amniotic membrane. Current eye research 20, 325-334. Łękawa–Ilczuk, A., Antosz, H., Rymgayłło–Jankowska, B., and Żarnowski, T. (2011). Expression of double strand DNA breaks repair genes in pterygium. Ophthalmic genetics 32, 39-47. Lewinger, J.P., Morrison, J.L., Thomas, D.C., Murcray, C.E., Conti, D.V., Li, D., and Gauderman, W.J. (2013). Efficient two-step testing of gene-gene interactions in genome-wide association studies. Genetic epidemiology 37, 440-451. Li, D.Q., Lee, S.B., Gunja-Smith, Z., Liu, Y., Solomon, A., Meller, D., and Tseng, S.C. (2001). Overexpression of collagenase (MMP-1) and stromelysin (MMP-3) by pterygium head fibroblasts. Archives of ophthalmology (Chicago, Ill : 1960) 119, 71-80. Lim, Y., Gondek, L., Li, L., Wang, Q., Ma, H., Chang, E., Huso, D.L., Foerster, S., Marchionni, L., McGovern, K., et al. (2015). Integration of Hedgehog and mutant FLT3 signaling in myeloid leukemia. Science translational medicine 7, 291ra296. Liu, L., Wu, J., Geng, J., Yuan, Z., and Huang, D. (2013). Geographical prevalence and risk factors for pterygium: a systematic review and meta-analysis. BMJ open 3, e003787. Loeb, L.A. (1994). Microsatellite instability: marker of a mutator phenotype in cancer. Cancer research 54, 5059-5063. Luthra, R., Nemesure, B.B., Wu, S.Y., Xie, S.H., and Leske, M.C. (2001). Frequency and risk factors for pterygium in the Barbados Eye Study. Archives of ophthalmology (Chicago, Ill : 1960) 119, 1827-1832. Mackey, D.A., Mackinnon, J.R., Brown, S.A., Kearns, L.S., Ruddle, J.B., Sanfilippo, P.G., Sun, C., Hammond, C.J., Young, T.L., Martin, N.G., et al. (2009). Twins eye study in Tasmania (TEST): rationale and methodology to recruit and examine twins. Twin research and human genetics : the official journal of the International Society for Twin Studies 12, 441-454. Maher, B. (2009). Exome sequencing takes centre stage in cancer profiling. Nature 459, 146-147. Mamanova, L., Coffey, A.J., Scott, C.E., Kozarewa, I., Turner, E.H., Kumar, A., Howard, E., Shendure, J., and Turner, D.J. (2010). Target-enrichment strategies for next-generation sequencing. Nat Meth 7, 111-118. Margraf, R.L., Crockett, D.K., Krautscheid, P.M.F., Seamons, R., Calderon, F.R.O., Wittwer, C.T., and Mao, R. (2009). Multiple endocrine neoplasia type 2 RET protooncogene database: Repository of MEN2-associated RET sequence variation and reference for genotype/phenotype correlations. Human Mutation 30, 548-556. Matsumoto, I., Inoue, A., Takai, C., Umeda, N., Tanaka, Y., Kurashima, Y., and Sumida, T. (2014). Regulatory roles of tumor necrosis factor alpha-induced proteins (TNFAIPs) 3 and 9 in arthritis. Clinical immunology (Orlando, Fla) 153, 73-78. Merriman, B., D Team, I.T., and Rothberg, J.M. (2012). Progress in Ion Torrent semiconductor chip based sequencing. ELECTROPHORESIS 33, 3397-3417. Nakanishi, A., Kitagishi, Y., Ogura, Y., and Matsuda, S. (2014). The tumor suppressor PTEN interacts with p53 in hereditary cancer (Review). International journal of oncology 44, 1813-1819. Ng, S.B., Buckingham, K.J., Lee, C., Bigham, A.W., Tabor, H.K., Dent, K.M., Huff, C.D., Shannon, P.T., Jabs, E.W., Nickerson, D.A., et al. (2010). Exome sequencing identifies the cause of a mendelian disorder. Nat Genet 42, 30-35. Pabst, T., and Mueller, B.U. (2009). Complexity of CEBPA dysregulation in human acute myeloid leukemia. Clinical cancer research : an official journal of the American Association for Cancer Research 15, 5303-5307. Quail, M.A., Smith, M., Coupland, P., Otto, T.D., Harris, S.R., Connor, T.R., Bertoni, A., Swerdlow, H.P., and Gu, Y. (2012). A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC genomics 13, 341. Reisman, D., McFadden, J.W., and Lu, G. (2004). Loss of heterozygosity and p53 expression in Pterygium. Cancer letters 206, 77-83. Rettig, E.M., Chung, C.H., Bishop, J.A., Howard, J.D., Sharma, R., Li, R.J., Douville, C., Karchin, R., Izumchenko, E., Sidransky, D., et al. (2015). Cleaved NOTCH1 Expression Pattern in Head and Neck Squamous Cell Carcinoma Is Associated with NOTCH1 Mutation, HPV Status, and High-Risk Features. Cancer prevention research (Philadelphia, Pa) 8, 287-295. Rodrigues, F., Arruda, J., Silva, R., and Moura, K. (2008). TP53 gene expression, codon 72 polymorphism and human papillomavirus DNA associated with pterygium. Genet Mol Res 7, 1251-1258. Saito, A., and Kamatani, N. (2002). Strategies for genome-wide association studies: optimization of study designs by the stepwise focusing method. Journal of human genetics 47, 360-365. Sampson, J., Jacobs, K., Yeager, M., Chanock, S., and Chatterjee, N. (2011). Efficient Study Design for Next Generation Sequencing. Genetic epidemiology 35, 269-277. Sanger, F., and Coulson, A.R. (1975). A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. Journal of molecular biology 94, 441-448. Schena, M., Shalon, D., Heller, R., Chai, A., Brown, P.O., and Davis, R.W. (1996). Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. Proceedings of the National Academy of Sciences of the United States of America 93, 10614-10619. Schlebusch, S., and Illing, N. (2012). Next generation shotgun sequencing and the challenges of de novo genome assembly: review article. South African Journal of Science 108, 1-8. Schneider, B.G., John-Aryankalayil, M., Rowsey, J.J., Dushku, N., and Reid, T.W. (2006). Accumulation of p53 protein in pterygia is not accompanied by TP53 gene mutation. Experimental eye research 82, 91-98. Schneider, B.G., Sahni, D., Torres, J.C., Dushku, N., and Reid, T.W. (2007). MLH1 and MSH2 expression in pterygia. Cornea 26, 468-472. Shendure, J.A., Porreca, G.J., Church, G.M., Gardner, A.F., Hendrickson, C.L., Kieleczawa, J., and Slatko, B.E. (2008). Overview of DNA sequencing strategies. Current Protocols in Molecular Biology, 7.1. 1-7.1. 23. Solomon, A., Pires, R.T.F., and Tseng, S.C.G. (2001). Amniotic membrane transplantation after extensive removal of primary and recurrent pterygia. Ophthalmology 108, 449-460. Spandidos, D., Sourvinos, G., Kiaris, H., and Tsamparlakis, J. (1997). Microsatellite instability and loss of heterozygosity in human pterygia. British journal of ophthalmology 81, 493-496. Stratton, M.R., Campbell, P.J., and Futreal, P.A. (2009). The cancer genome. Nature 458, 719-724. Sun, C.K., Yu, C.H., Tai, S.P., Kung, C.T., Wang, I.J., Yu, H.C., Huang, H.J., Lee, W.J., and Chan, Y.F. (2007). In vivo and ex vivo imaging of intra-tissue elastic fibers using third-harmonic-generation microscopy. Optics express 15, 11167-11177. Tan, D.T., Liu, Y.P., and Sun, L. (2000). Flow cytometry measurements of DNA content in primary and recurrent pterygia. Investigative ophthalmology visual science 41, 1684-1686. Tong, L., Chew, J., Yang, H., Ang, L.P., Tan, D.T., and Beuerman, R.W. (2009). Distinct gene subsets in pterygia formation and recurrence: dissecting complex biological phenomenon using genome wide expression data. BMC medical genomics 2, 14. Tsai, Y.Y., Bau, D.T., Chiang, C.C., Cheng, Y.W., Tseng, S.H., and Tsai, F.J. (2007). Pterygium and genetic polymorphism of DNA double strand break repair gene Ku70. Mol Vis 13, 1436-1440. Tsongalis, G.J., Peterson, J.D., de Abreu, F.B., Tunkey, C.D., Gallagher, T.L., Strausbaugh, L.D., Wells, W.A., and Amos, C.I. (2014). Routine use of the Ion Torrent AmpliSeq™ Cancer Hotspot Panel for identification of clinically actionable somatic mutations. Clinical Chemistry and Laboratory Medicine 52, 707-714. van Setten, G., Aspiotis, M., Blalock, T.D., Grotendorst, G., and Schultz, G. (2003). Connective tissue growth factor in pterygium: simultaneous presence with vascular endothelial growth factor - possible contributing factor to conjunctival scarring. Graefes Arch Clin Exp Ophthalmol 241, 135-139. Vissers, L.E.L.M., de Ligt, J., Gilissen, C., Janssen, I., Steehouwer, M., de Vries, P., van Lier, B., Arts, P., Wieskamp, N., del Rosario, M., et al. (2010). A de novo paradigm for mental retardation. Nat Genet 42, 1109-1112. Wang, I.J., Hu, F.R., Chen, P.J., and Lin, C.T. (2000a). Mechanism of abnormal elastin gene expression in the pinguecular part of pterygia. The American journal of pathology 157, 1269-1276. Wang, I.J., Lai, W.T., Liou, S.W., Chiu, C.Z., Hu, F.R., Kao, W.W., and Hung, P.T. (2000b). Impression cytology of pterygium. Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics 16, 519-528. Wickert, H., Zaar, K., Grauer, A., John, M., Zimmermann, M., and Gillardon, F. (1999). Differential induction of proto-oncogene expression and cell death in ocular tissues following ultraviolet irradiation of the rat eye. The British journal of ophthalmology 83, 225-230. Xu, M., Cai, C., Sun, X., Chen, W., Li, Q., and Zhou, H. (2015). Clnk plays a role in TNF-alpha-induced cell death in murine fibrosarcoma cell line L929. Biochemical and biophysical research communications 463, 275-279. Xuan, J., Yu, Y., Qing, T., Guo, L., and Shi, L. (2013). Next-generation sequencing in the clinic: promises and challenges. Cancer letters 340, 284-295. Yan, X.-J., Xu, J., Gu, Z.-H., Pan, C.-M., Lu, G., Shen, Y., Shi, J.-Y., Zhu, Y.-M., Tang, L., Zhang, X.-W., et al. (2011). Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet 43, 309-315. Young, C.H., Lo, Y.L., Tsai, Y.Y., Shih, T.S., Lee, H., and Cheng, Y.W. (2010). CYP1A1 gene polymorphisms as a risk factor for pterygium. Mol Vis 16, 1054-1058. Yu, H.C., Lin, C.L., Chen, Z.T., Hu, F.R., Sung, F.C., and Wang, I.J. (2014). Risk of skin cancer in patients with pterygium: a nationwide population-based cohort study in Taiwan. The ocular surface 12, 69-76. Zhi, D., and Chen, R. (2012). Statistical Guidance for Experimental Design and Data Analysis of Mutation Detection in Rare Monogenic Mendelian Diseases by Exome Sequencing. PloS one 7, e31358. Zhou, Y., Li, N., Zhuang, W., Liu, G.-J., Wu, T.-X., Yao, X., Du, L., Wei, M.-L., and Wu, X.-T. (2007). P53 codon 72 polymorphism and gastric cancer: A meta-analysis of the literature. International Journal of Cancer 121, 1481-1486. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53834 | - |
dc.description.abstract | 研究背景及目的:眼角膜翳狀贅肉是一種常見的眼表疾病,目前統計全球約有10.2%的患病人口,在紫外線照射強烈的低緯度台灣南部40歲以上成人盛行率更達到25.2%。眼角膜翳狀贅肉病灶發生在角膜及結膜交界處,其主要病理變化包含其表皮細胞不正常增生和異常的纖維化血管結締組織增生,一開始病灶只局限於角膜的邊緣輪部,當病灶慢慢長大時會蔓延至角膜中間,產生散光增加,嚴重者增生組織更會遮蔽視線,使視力嚴重受損。由於眼角膜翳狀贅肉本身也會有炎性反應,而且組織隆起造成淚液分布不均和堆積,會讓患者有眼部充血、刺痛、溢淚等不適感。目前眼角膜翳狀贅肉唯一治療方式只有手術切除,進行切除手術時,常會合併羊膜、結膜移植或同時使用抗癌藥物來避免手術治療後的復發。由於其有手術後復發率高的特性,加上在許多組織病理上也有一些半腫瘤組織變化,因此先前的研究都朝向和腫瘤相關的細胞學或基因變異的研究,但即使已進行許多的研究,它的致病機轉仍然不是很明確清楚。眼角膜翳狀贅肉好發於熱帶或亞熱帶紫外線照射強烈的區域,因此除了紫外線因子流行病學調查研究外,先前的研究也大都針對紫外線造成的基因變異,因而造成表現如腫瘤般特性的觀察來探討其生成機轉。在文獻上有幾個可能的基因變異已經被發現和眼角膜翳狀贅肉生成有關,例如:XRCC1、hOGG1及TP53,很不幸的是這些基因變異在後來其他研究中重複性很低,而且都是選擇性的針對某一個基因來進行研究,因此其正確性也較會被存疑。在基因體研究及次世代定序技術發展之後,開啟了一個新的研究模式。本研究的目的是希望利用次世代高通量基因體定序方法分析眼角膜翳狀贅肉的全外顯子基因體定序 (whole exomic sequencing ),搭配熱點基因資料庫 (hot-spot genes database)來建構出眼角膜翳狀贅肉可能的致病基因模式。 研究方法:在經人體試驗委員會核准,手術前經病人簽署同意書後,眼角膜翳狀贅肉的組織檢體在病人手術中被收集。檢體進行DNA萃取,經品質和量的驗證後,經過Ion AmpliSeq™ Exome solution外顯子基因體增幅 (exomic enrichment ) 後,用Ion Proton Torrent晶片定序儀進行全基因體分析,定序資料使用以下分析軟體:FastQC進行品質管制、TMAP進行序列比對組合排列、SAMtool及IGV進行定序檔案的轉換、TVC及GATK尋找篩選特異變異點、IR進行基因序列的註解,最後搭配熱點基因資料庫進行突變點基因分析。 結果:共有五個檢體符合定序品質條件,每個樣本的定序輸出量為57.7Mb,定序深度達129倍以上,變異資料比對癌症熱點基因庫後,從所有的變異位點中共找出7個錯義突變位點 (missense 基因突變 ):SYNE1、TP53、RET、STK11、CEBPA、TNFAIP3、IL7R。有三個變異位點是五個病人都有的:PDGFRA、SYNE1、NOTCH1。 結論:我們找出七個錯義突變位點的基因,為可能的驅動突變基因位點。還有三個為所有樣本都有的變異位點。然而,其細胞生物交互作用以及生物路徑的分析未來還需要更完整的證實。 關鍵字:眼角膜翳狀贅肉;次世代定序;外顯子基因體定序;熱點基因資料庫。 | zh_TW |
dc.description.abstract | Purpose:Pterygium is a common ocular surface disease occurring in 10.2% population in the world and 25.2% Southern Taiwanese adults. It will cause local inflammation and local irritation around the lesion, and vision would be threatened when the pterygium encroaches over the surface of cornea. The most interesting and devastating characteristics of pterygium is its high recurrence rate after surgery. Due to this tumor-like characteristic, its pathogenesis is believed to be associated with ultraviolet irradiation and consequently genetic variations. For example, some susceptibility genes, ex. XRCC1, hOGG1 and TP53, were found to be associated with pterygial formation. Unfortunately, the causing mechanism is still unclear at present after many studies in decades because these genetic variations cannot be repeated in the subsequent studies. With the advent of modern genetic analysis method developed recently, we proposed to develop a reasonable and a novel approach to study the genetic variations of pterygium. In current study, we adopted the whole exomic sequencing resulting from next generation sequencing and analyzed the sequencing variations integrating with hot-spot genes database. Method:Pterygial specimens were collected from 5 patients during surgical excision. These 5 samples were subjected to genomic DNA extraction. After exomic enrichment by Ion AmpliSeq™ Exome solution, the DNA library was used for exomic sequencing with Ion Proton Torrent Chip platform. Raw sequencing data were analyzed with the following programs steps by steps:FastQC for quality control, TMAP for mapping and assembling/alignment, SAMtool and IGV for file conversion, TVC and GATK for calling variants, IR for annotation. The sequencing variants results were integrated with hot-spot cancer genes database and CHB samples from HapMap phase2 build 36 release 28 for evaluation of possible genetic variations. Result:There were 5 samples undergone exomic sequencing. Each sample went through a 57.7Mb output and the depth was achieved over 129x coverage. After being integrated with hot-spot genes database, we found 7 missense mutations:SYNE1、TP53、RET、STK11、CEBPA、TNFAIP3、IL7R. We also found 3 mutations owned by all samples:PDGFRA、SYNE1、NOTCH1. Conclusion:These 7 missense mutations could be driver mutations. All samples share 3 common SNPs. The biological interactions and pathway analysis should be validated in the future. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T02:30:54Z (GMT). No. of bitstreams: 1 ntu-104-P02421020-1.pdf: 1184197 bytes, checksum: 799262a9949c445c5e9e67c96338ff85 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 口試委員會審定書 i 誌謝 iv 中文摘要 v 英文摘要 vii 論文內容 第一章 緒論 1 第一節 眼角膜翳狀贅肉 1 1.1.1 眼角膜翳狀贅肉的臨床病理機轉 1 1.1.2 眼角膜翳狀贅肉的流行病學 2 1.1.3 眼角膜翳狀贅肉的致病基因研究 3 1.1.4 眼角膜翳狀贅肉現代基因體研究 6 第二節 次世代定序 7 1.2.1 基因定序的演進 7 1.2.2 常見次世代定序儀比較分析 8 1.2.3 定序資料分析流程 9 1.2.4 外顯子基因體定序研究 10 第三節 微陣列晶片及基因資料庫 11 1.3.1 眼角膜翳狀贅肉的微陣列分析 11 1.3.2 癌症熱點基因的資料庫 12 1.3.3 二階段定序方法 13 第二章 研究目的 15 第三章 研究方法及進行步驟 16 3.1 研究設計 16 3.2 實驗方法 16 3.3 資料分析工具 17 3.4 統計方法 18 第四章 結果 19 4.1 建庫前品質控制 19 4.2 建庫結果 19 4.3 定序結果與變異位點 19 4.4 比對熱點基因資料庫之變異位點 20 第五章 結論 23 第六章 討論 26 6.1 研究方法的探討 26 6.2 變異基因位點的探討 27 6.2.1 所有病人都有的變異位點 27 6.2.2 較高比例的對偶基因變異 28 6.2.3 較低比例的對偶基因變異 31 6.3 可能的誤差 32 第七章 展望 35 第八章 參考文獻 37 附表 表1 以往文獻中眼角膜翳狀贅肉之基因變異或表現異常 46 表2 Illumina 定序儀各式機型比較表 47 表3 熱點癌症基因資料庫 48 表4 病患個人背景特徵 49 表5 影響統計效力的各項因子 50 表6 光譜分析儀品質控制結果 51 表7 Qubit螢光計品質控制的結果 52 表8 五個樣本的定序變異結果整理 53 表9 與熱點基因庫比較後變異位點及其對偶基因比率 54 表10次世代定序建庫品質定量及評估方法 55 表11次世代定序與微陣列晶片定序比較 56 附圖 圖1 流程圖 57 圖2 資料流程分析圖 58 圖3 外顯子基因體增幅過程 59 圖4 焦磷酸定序原理 60 圖5 洋菜膠體電泳品質控制洋菜膠體電泳圖 61 圖6 建庫結果序列片段長度分布圖 62 圖7 建庫後品質控制圖 63 | |
dc.language.iso | zh-TW | |
dc.title | 利用次世代基因定序方法篩選眼角膜翳狀贅肉的外顯子基因體可能之基因變異序列 | zh_TW |
dc.title | Next Generation Exomic Sequencing for Pterygium | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 周祖述(Tzuu-Shuh Jou),陳沛隆(Pei-Lung Chen) | |
dc.subject.keyword | 眼角膜翳狀贅肉,次世代定序,外顯子基因體定序,熱點基因資料庫, | zh_TW |
dc.subject.keyword | Pterygium,NGS (next generation sequence),whole exome sequence,hot-spot genes database, | en |
dc.relation.page | 63 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-07-30 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 臨床醫學研究所 | zh_TW |
顯示於系所單位: | 臨床醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 1.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。