Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53833
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳耀銘
dc.contributor.authorChia-Jung Tsaien
dc.contributor.author蔡佳容zh_TW
dc.date.accessioned2021-06-16T02:30:53Z-
dc.date.available2021-04-04
dc.date.copyright2015-08-16
dc.date.issued2015
dc.date.submitted2015-07-30
dc.identifier.citation[1] A.D. Paquette and D.M. Divan, “Providing improved power quality in microgrids: difficulties in competing with existing power-quality solutions,” IEEE, Industry Applications Magazine, vol. 20, no. 5, pp. 34-43, Sept.-Oct. 2014.
[2] Y.T. Chen, Y.F. Chen, C.Y. Tang, Y.M. Chen, and Y.R. Chang, “An active power conditioner with a multi-mode power control strategy for a microgrid, ” in Proc. IEEE IFEEC 2013, pp.93-97, Nov. 2013
[3] R. Majumder, A. Ghosh, G. Ledwich, and F. Zare, “Power management and power flow control with back-to-back converters in a utility connected microgrid,” IEEE Trans. on Power Systems, vol. 25, no. 2, pp. 821-834, May. 2010.
[4] J. Alcala, V.Cardenas, A.R. Ramirez-Lopez, and J. Gudino-Lau, “Study of the bidirectional power flow in back - to - back converters by using linear and nonlinear control strategies,” in Proc. IEEE, ECCE, 2011, pp.806-813.
[5] Z. Shu, S. Xie, and Q. Li, “Single-phase back-to-back converter for active power balancing, reactive power compensation, and harmonic filtering in traction power system,” IEEE Trans. Power Electron, vol.26, no. 2, pp. 334-343, Feb. 2011.
[6] K. De Brabandere, B. Bolsens, J. Van den Keybus, A. Woyte, J. Driesen, and R. Belmans, “A voltage and frequency droop control method for parallel inverters,” IEEE Trans. on Power Electronics, vol.22, no.4, pp. 1107-1115, Jul. 2007.
[7] F. Katiraei and M.R. Iravani, “Power management strategies for a microgrid with multiple distributed generation units,” IEEE Trans. on Power Systems, vol.21, no.4, pp. 1821-1831, Nov. 2006.
[8] H. Bevrani and S. Shokoohi, “An intelligent droop control for simultaneous voltage and frequency regulation in islanded microgrids,” IEEE Trans. on Smart Grid, vol. 4, no. 3, pp. 1505-1513, Sep. 2013.
[9] R.C. Portillo, M.M. Prats, J.I. Leon, J.A. Sanchez, J.M. Carrasco, E. Galvan, and L.G. Franquelo, “Modeling strategy for back-to-back three-level converters applied to high-power wind turbines,” IEEE Trans. on Industrial Electronics., vol. 53, no. 5, pp. 1483-1491, Oct. 2006.
[10] J.S. Lee, K.B. Lee, and F. Blaabjerg, “Open-switch fault detection method of a back-to-back converter using NPC topology for wind turbine systems,” IEEE Trans. on Industry Applications, vol. 51, no. 1, pp. 325-335, Jan.- Feb. 2015.
[11] J. Pou, R. Pindado, D. Boroyevich, and P. Rodriguez, “Limits of the neutral-point balance in back-to-back-connected three-level converters,” IEEE Trans. on Power Electronics, vol.19, no.3, pp. 722-731, May. 2004.
[12] M. Saeedifard, R. Iravani, and J. Pou, “A space vector modulation strategy for a back-to-back five-level HVDC converter system,” IEEE Trans. on Industrial Electronics., vol. 56, no. 2, pp. 452-466, Feb. 2009.
[13] J. S. Lai and F. Z. Peng, “Multilevel converters-a new breed of power converters,” IEEE Trans. on Industry Applications, vol.32, no.3, pp. 509-517, May-Jun. 1996.
[14] M. Chaves, E. Margato, J.F. Silva, S.F. Pinto, and J. Santana, “Fast optimum-predictive control and capacitor voltage balancing strategy for bipolar back-to-back NPC converters in high-voltage direct current transmission systems,” IET, Generation, Transmission & Distribution, vol.5, no.3, pp.368-375, March 2011
[15] G. Buticchi, E. Lorenzani, and C. Bianchini, “Optimal system control of a back-to-back power converter for wind grid-connected converter,” Energy Conference and Exhibition, vol., no., 2012, pp. 195-200.
[16] I. Abdelsalam, G.P. Adam, D. Holliday, and B.W. Williams, “Modified back-to-back current source converter and its application to wind energy conversion systems,” IET , Power Electronics, vol.8, no.1, pp.103-111, 1 2015.
[17] I. Jlassi, J.O. Estima, S.K. El Khil, N.M. Bellaaj, and A.J. Marques Cardoso, “Multiple open-circuit faults diagnosis in back-to-back converters of PMSG drives for wind turbine systems,” IEEE Trans. on Power Electronics, vol.30, no.5, pp. 2689-2702, May. 2015.
[18] R. Pena, J.C. Clare, and G.M. Asher, “Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation,” IET, Electric Power Applications, vol.143, no.3, pp.231-241, May 1996.
[19] J. Alcala, V. Cardenas, J. Perez-Ramirez, R.J. Betancourt, and H. Miranda, “Improving power flow in transformers using a BTB converter to balance low voltage feeders,” IEEE ECCE, vol., no., 2012, pp. 2038-2044.
[20] R. Simanjorang, Y. Miura, T. Ise, S. Sugimoto, and H. Fujita, “Application of series type BTB converter for minimizing circulating current and balancing power transformers in loop distribution lines,” Power Conversion Conference, vol., no., 2007, pp. 997-1004.
[21] T.F. Wu, C.H. Chang, L.C. Lin, G.R. Yu, and Y.R. Chang, “DC-bus voltage control with a three-phase bidirectional inverter for DC distribution systems,” IEEE Trans. on Power Electronics, vol.28, no.4, pp. 1890-1899, April. 2013.
[22] H. Kakigano, Y. Miura, and T. Ise, “Distribution voltage control for DC microgrids using fuzzy control and gain-scheduling technique,” IEEE Trans. on Power Electronics, vol.28, no.5, pp. 2246-2258, May. 2013.
[23] J. Jung, S. Lim, and K. Nam, “A feedback linearizing control scheme for a PWM converter-inverter having a very small DC-link capacitor,” IEEE Trans. on Industry Applications, vol.35, no.5, pp. 1124-1131, Sep-Oct. 1999.
[24] N. Hur, J. Jung, and K. Nam, “A fast dynamic DC-link power-balancing scheme for a PWM converter-inverter system,” IEEE Trans. on Industrial Electronics., vol. 48, no. 4, pp. 794-803, Aug. 2001.
[25] M. Hagiwara and H. Akagi, “Practical methods for tuning PI controllers in the DC-link voltage loop in back-to-back power converters,” in Proc. IEEE CIPE, 2010, pp. 46-52.
[26] C. Tang, Y. Chen, Y. Chen, and Y. Chang, “DC-link voltage control strategy for three-phase back-to-back active power conditioners,” IEEE Trans. on Industrial Electronics., early access article, 2015.
[27] W. Baochao, M. Sechilariu, and F. Locment, “Intelligent DC microgrid with smart grid communications: control strategy consideration and design,” IEEE Trans. on Smart Grid, vol. 3, no. 4, pp. 2148-2156, Dec. 2012.
[28] V.C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati, and G.P. Hancke, “Smart grid technologies: communication technologies and standards,” IEEE Trans. on Industrial Informatics, vol. 7, no. 4, pp. 529-539, Nov. 2011.
[29] Y. Yan, Y. Qian, H. Sharif, and D. Tipper, “A survey on smart grid communication infrastructures: motivations, requirements and challenges,” IEEE Trans. on Communications Surveys & Tutorials, vol. 15, no. 1, pp. 5-20, First Quarter. 2013.
[30] K. Mets, J.A. Ojea, and C. Develder, “Combining power and communication network simulation for cost-effective smart grid analysis,” IEEE Trans. on Communications Surveys & Tutorials, vol. 16, no. 3, pp. 1771-1796, Third Quarter. 2014.
[31] E.J. Bueno, A. Hernandez, F.J. Rodriguez, C. Girón, R. Mateos, and S. Cobreces, “A DSP- and FPGA-based industrial control with high-speed communication Interfaces for grid converters applied to distributed power generation systems,” IEEE Trans. on Industrial Electronics, vol. 56, no. 3, pp. 654-669, March. 2009.
[32] S. Thale and V. Agarwal,“Controller area network (CAN) based smart protection scheme for solar PV, fuel cell, ultra-capacitor and wind energy system based microgrid, ” in Proc. IEEE PVSC, 2012, pp. 580-585.
[33] J. Rocabert, A. Luna, F. Blaabjerg, and P. Rodríguez, “Control of power converters in AC microgrids,” IEEE Trans. on Power Electronics, vol.27, no.11, pp.4734-4749, Nov. 2012.
[34] Z. Kan, Z. Guo, C. Zhang, and X. Meng, “Research on droop control of inverter interface in autonomous microgrid, ” in Proc. IEEE, PEAC, 2014, pp.195-199.
[35] M. Farsi, K. Ratcliff, and M. Barbosa, “An overview of controller area network,” IEEE Trans. on Computing & Control Engineering Journal, vol.10, no.3, pp.113-120, June. 1999.
[36] N. Navet, “Controller area network [automotive applications],” IEEE Trans. Potentials, vol.17, no.4, pp.12-14, Oct/Nov 1998.
[37] K.M. Zuberi and K.G. Shin, “Design and implementation of efficient message scheduling for controller area network,” IEEE Trans. on Computers, vol.49, no.2, pp. 182-188, Feb. 2000.
[38] M. F. Schonardie and D. C. Martins, “Application of the dq0 transformation in the three-phase grid-connected PV systems with active and reactive power control,” IEEE International Conference on Sustainable Energy Technologies, 2008, pp. 18-23.
[39] 陳要廷,「具功率控制與低電壓穿越之三相市電併聯換流器研製」,國立台灣大學電機所碩士論文,2013。
[40] 吳勇賜,「具低電壓穿越能力之市電併聯PV換流器」,國立台灣大學電機所碩士論文,2012。
[41] Y.M. Chen, H.C. Wu, Y.C. Chen, K.Y. Lee, and S.S. Shyu, “The AC line current regulation strategy for the grid-connected PV system,” IEEE Trans. on Power Electronics, vol.25, no.1, pp. 209-218, Jan. 2010.
[42] 陳彥甫,「具功率潮流優化控制之主動式電力調節器研製」,國立台灣大學電機所碩士論文,2014。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53833-
dc.description.abstract本論文提出適用於主動式電力調節器之動態優化電流調變方法。當主動式電力調節器之輸出實功率驟變時,可透過動態優化電流調變決定適當之輸入電流以穩定直流匯流排電壓,減少直流匯流排電壓之波動,進而降低直流匯流排電容值。另一方面,由於不同程度之實功率變載對於直流匯流排電壓之影響不一,因此,論文中也將針對不同之直流匯流排電壓調控速度進行探討,並列出動態優化電流調變之數學推導式。此外,本論文亦開發主動式電力調節器之通訊功能,研製一組控制器區域網路(Controller Area Network; CAN)通訊界面,讓使用者不僅能透過人機介面監控系統之運轉參數,也可下達實虛功命令以執行微電網間之功率調配。最後以5kVA之硬體實測波形來驗證本論文所提出之動態優化電流調變效果以及通訊功能。zh_TW
dc.description.abstractA dynamic optimal ac line current modulation (DOCM) method for the active power conditioner (APC) is proposed in this thesis. The proposed DOCM method is able to determine the appropriate input current to stabilize the dc-bus voltage as soon as an abrupt power change of the APC occured. By adopting the proposed method, the dc-bus voltage fluctuation can be minimized while providing the feasibility of the dc-bus capacitance reduction. On the other hand, in order to regulate the voltage variation under different power changing scenarios, the regulating slope of the dc-bus voltage under different operating conditions are discussed. Mathematical equations for the proposed DOCM method are derived thoroughly in this paper. Besides, a Controller Area Network (CAN) communication interface is developed for the system monitoring and the power flow control between two micro-grids. Finally, experimental measurements obtained from a 5kVA prototype circuit are presented to verify the performances of the proposed DOCM method.en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:30:53Z (GMT). No. of bitstreams: 1
ntu-104-R02921026-1.pdf: 6238556 bytes, checksum: ab232ac48d6c9b3b6b4b475bf9aef801 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員審定書 #
致謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vii
表目錄 x
第一章 緒論 1
1-1 研究背景與動機 1
1-2 文獻回顧 2
1-3 論文大綱 3
第二章 適用於微電網之主動式電力調節器 5
2-1 微電網介紹 5
2-1-1 微電網之構成與特性 5
2-1-2 實、虛功補償策略. 6
2-1-3 CAN Bus通訊介面. 8
2-2 主動式電力調節器 10
2-2-1 電路架構與操作原理. 11
2-2-2 正弦脈寬調變切換. 11
2-2-3 功率潮流控制架構 14
第三章 直流匯流排電壓控制 20
3-1 直流匯流排電壓控制策略介紹 20
3-1-1 功率潮流平衡控制 20
3-1-2 定電壓控制 22
3-2 優化電流調變 23
3-2-1 操作原理 23
3-2-2 變載情形下之誤差分析 26
3-3 動態優化電流調變 28
3-3-1 啟動條件 28
3-3-2 操作原理 30
3-3-3 電壓調控速度之分析 33
第四章 系統軟硬體電路 38
4-1電力級硬體電路 38
4-1-1直流匯流排電容之設計 39
4-1-2 濾波電感設計 40
4-2 控制級硬體電路 41
4-2-1 數位信號處理器介紹 41
4-2-2 數位信號處理器周邊與回授電路設計 42
4-2-3 電壓與電流偵測電路設計 47
4-3 CAN Bus通訊介面硬體電路 50
4-4 系統控制流程 51
第五章 硬體實作與測試 62
5-1 直流匯流排電壓控制測試 63
5-1-1 基本實虛功輸出測試 63
5-1-2 電流調變方法之比較 64
5-2 通訊功能測試 69
5-2-1 通訊介面實現 69
5-2-2 人機介面實現 70
5-2-3 實、虛功率漸進變動測試 71
5-3 燒機與效率測試 76
第六章 結論與未來研究方向 79
6-1 結論 79
6-2未來研究方向 80
參考文獻 81
dc.language.isozh-TW
dc.subject控制器區域網路zh_TW
dc.subject主動式電力調節器zh_TW
dc.subject動態優化電流調變zh_TW
dc.subjectactive power conditioneren
dc.subjectdynamic optimal ac line current modulationen
dc.subjectCANen
dc.title主動式電力調節器之動態優化電流調變zh_TW
dc.titleDynamic Optimal Current Modulation for Active Power Conditionersen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳德玉,邱煌仁,陳景然
dc.subject.keyword主動式電力調節器,動態優化電流調變,控制器區域網路,zh_TW
dc.subject.keywordactive power conditioner,dynamic optimal ac line current modulation,CAN,en
dc.relation.page85
dc.rights.note有償授權
dc.date.accepted2015-07-30
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
6.09 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved