請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53822完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐振哲 | |
| dc.contributor.author | Chih-Ming Wang | en |
| dc.contributor.author | 汪志銘 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:30:35Z | - |
| dc.date.available | 2020-08-03 | |
| dc.date.copyright | 2015-08-03 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-30 | |
| dc.identifier.citation | 1. I. Langmuir, ' Oscillations in ionized gases ', Proc. Natl. Acad. Sci. U. S. A., 14,
627-637 (1928). 2. L. Tonks and I. Langmuir, ' Oscillations in ionized gases ', Physical Review, 33 (2), 195-210 (1929). 3. J. W. Coburn and H. F. Winters, ' Ion-assisted and electron-assisted gas-surface chemistry - important effect in plasma-etching ', J. Appl. Phys., 50 (5), 3189-3196 (1979). 4. J. W. Coburn and H. F. Winters, ' Plasma-etching - discussion of mechanisms ', Journal of Vacuum Science & Technology, 16 (2), 391-403 (1979). 5. A. B. Djurisic and Y. H. Leung, ' Optical properties of ZnO nanostructures ', Small, 2 (8-9), 944-961 (2006). 6. T. Minami, ' Transparent conducting oxide semiconductors for transparent electrodes ', Semicond. Sci. Technol., 20 (4), S35-S44 (2005). 7. K. L. Choy, ' Chemical vapour deposition of coatings ', Prog. Mater. Sci., 48 (2), 57-170 (2003). 8. J. R. Conrad, J. L. Radtke, R. A. Dodd, F. J. Worzala and N. C. Tran, ' Plasma source ion-implantation techinique for surface modification of materials ', J. Appl. Phys., 62 (11), 4591-4596 (1987). 9. P. K. Chu, J. Y. Chen, L. P. Wang and N. Huang, ' Plasma-surface modification of biomaterials ', Mater. Sci. Eng. R-Rep., 36 (5-6), 143-206 (2002). 10. K. H. Becker, K. H. Schoenbach and J. G. Eden, ' Microplasmas and applications ', J. Phys. D-Appl. Phys., 39 (3), R55-R70 (2006). 11. F. Iza, G. J. Kim, S. M. Lee, J. K. Lee, J. L. Walsh, Y. T. Zhang and M. G. Kong, ' Microplasmas: sources, particle kinetics, and biomedical applications ', Plasma Process. Polym., 5 (4), 322-344 (2008). 12. D. Mariotti and R. M. Sankaran, ' Perspectives on atmospheric-pressure plasmas for nanofabrication ', J. Phys. D-Appl. Phys., 44 (17), 8 (2011). 13. J. West, A. Michels, S. Kittel, P. Jacob and J. Franzke, ' Microplasma writing for surface-directed millifluidics ', Lab Chip, 7 (8), 981-983 (2007). 150 14. C. Priest, P. J. Gruner, E. J. Szili, S. A. Al-Bataineh, J. W. Bradley, J. Ralston, D. A. Steele and R. D. Short, ' Microplasma patterning of bonded microchannels using high-precision 'injected' electrodes ', Lab Chip, 11 (3), 541-544 (2011). 15. C. Priest, ' Surface patterning of bonded microfluidic channels ', Biomicrofluidics, 4 (3), 13 (2010). 16. M. H. Kim, J. H. Cho, S. B. Ban, R. Y. Choi, E. J. Kwon, S. J. Park and J. G. Eden, ' Efficient generation of ozone in arrays of microchannel plasmas ', J. Phys. D- Appl. Phys., 46 (30), 9 (2013). 17. D. B. Luo and Y. X. Duan, ' Microplasmas for analytical applications of lab-on- a-chip ', Trac-Trends Anal. Chem., 39, 254-266 (2012). 18. C. Meyer, S. Muller, E. L. Gurevich and J. Franzke, ' Dielectric barrier discharges in analytical chemistry ', Analyst, 136 (12), 2427-2440 (2011). 19. J. C. T. Eijkel, H. Stoeri and A. Manz, ' A dc microplasma on a chip employed as an optical emission detector for gas chromatography ', Anal. Chem., 72 (11), 2547-2552 (2000). 20. M. Miclea, K. Kunze, J. Franzke and K. Niemax, ' Plasmas for lab-on-the-chip applications ', Spectroc. Acta Pt. B-Atom. Spectr., 57 (10), 1585-1592 (2002). 21. M. A. Lieberman and A. J. Lichtenberg, ' Principles of plasma discharges and materials processing ', MRS Bulletin, 30, 899-901 (1994). 22. N. S. J. Braithwaite, ' Introduction to gas discharges ', Plasma Sources Sci. Technol., 9 (4), 517-527 (2000). 23. K. H. Becker, 'Non-equilibrium air plasmas at atmospheric pressure ', Institute of Physics Publishing, Bristol, (2005). 24. C. Tendero, C. Tixier, P. Tristant, J. Desmaison and P. Leprince, ' Atmospheric pressure plasmas: a review ', Spectroc. Acta Pt. B-Atom. Spectr., 61 (1), 2-30 (2006). 25. A. Bogaerts, E. Neyts, R. Gijbels and J. van der Mullen, ' Gas discharge plasmas and their applications ', Spectroc. Acta Pt. B-Atom. Spectr., 57 (4), 609-658 (2002). 26. R. Gomer, 'Field emission and field ionization ', American Institute of Physics, New York, (1993). 27. E. M. Bazelyan and Y. P. Raizer, 'Spark discharge ', CRC press, (1997). 28. F. Paschen, ' Bohr's helium lines ', Ann. Phys.-Berlin, 50 (16), 901-940 (1916). 151 29. D. Pappas, ' Status and potential of atmospheric plasma processing of materials ', J. Vac. Sci. Technol. A, 29 (2), 17 (2011). 30. K. Tachibana, ' Current status of microplasma research ', IEEJ Transactions on Electrical and Electronic Engineering, 1 (2), 145-155 (2006). 31. S. M. Rossnagel, J. J. Cuomo and W. D. Westwood, 'Handbook of Plasma Processing Technology: Fundamentals, Etching, Deposition, and Surface Interactions ', Noyes Publications, (1990). 32. T. Fend, G. Jorgensen and H. Kuster, ' Applicability of highly reflective aluminium coil for solar concentrators ', Sol. Energy, 68 (4), 361-370 (2000). 33. S. Schiller, G. Beister and W. Sieber, ' Reactive high-rate DC sputtering - deposition rate, stoichiometry and features of TIOX and TINX films with respect to the target mode ', Thin Solid Films, 111 (3), 259-268 (1984). 34. J. E. Sundgren, B. O. Johansson, S. E. Karlsson and H. T. G. Hentzell, ' Mechanisms of reactive sputtering of titanium nitride and titanium carbide. 2. morphology and structure ', Thin Solid Films, 105 (4), 367-384 (1983). 35. M. Laroussi, ' Low temperature plasma-based sterilization: overview and state- of-the-art ', Plasma Process. Polym., 2 (5), 391-400 (2005). 36. M. Moisan, J. Barbeau, M. C. Crevier, J. Pelletier, N. Philip and B. Saoudi, ' Plasma sterilization. Methods mechanisms ', Pure Appl. Chem., 74 (3), 349-358 (2002). 37. G. Clarotti, F. Schue, J. Sledz, A. A. Benaoumar, K. E. Geckeler, A. Orsetti and G. Paleirac, ' Modification of the biocompatible and haemocompatible properties of polymer substrates by plasma-deposited fluorocarbon coatings ', Biomaterials, 13 (12), 832-840 (1992). 38. E. Lugscheider, T. Weber, M. Knepper and F. Vizethum, ' Production of biocompatible coatings by atmospheric plasma spraying ', Mater. Sci. Eng. A- Struct. Mater. Prop. Microstruct. Process., 139, 45-48 (1991). 39. S. Yonson, S. Coulombe, V. Leveille and R. L. Leask, ' Cell treatment and surface functionalization using a miniature atmospheric pressure glow discharge plasma torch ', J. Phys. D-Appl. Phys., 39 (16), 3508-3513 (2006). 40. Z. Ding, J. N. Chen, S. Y. Gao, J. B. Chang, J. F. Zhang and E. T. Kang, ' Immobilization of chitosan onto poly-L-lactic acid film surface by plasma graft polymerization to control the morphology of fibroblast and liver cells ', 152 Biomaterials, 25 (6), 1059-1067 (2004). 41. N. A. Bullett, D. P. Bullett, F. E. Truica-Marasescu, S. Lerouge, F. Mwale and M. R. Wertheimer, ' Polymer surface micropatterning by plasma and VUV- photochemical modification for controlled cell culture ', Appl. Surf. Sci., 235 (4), 395-405 (2004). 42. D. Gunther, R. Frischknecht, C. A. Heinrich and H. J. Kahlert, ' Capabilities of an Argon Fluoride 193 nm excimer laser for laser ablation inductively coupled plasma mass spectrometry microanalysis of geological materials ', J. Anal. At. Spectrom., 12 (9), 939-944 (1997). 43. P. J. Sylvester and M. Ghaderi, ' Trace element analysis of scheelite by excimer laser ablation inductively coupled plasma mass spectrometry (ELA-ICP-MS) using a synthetic silicate glass standard ', Chem. Geol., 141 (1-2), 49-65 (1997). 44. M. Kogoma and S. Okazaki, ' Raising of ozone formation efficiency in a homogeneous glow-discharge plasma at atmospheric-pressure ', J. Phys. D-Appl. Phys., 27 (9), 1985-1987 (1994). 45. H. L. Chen, H. M. Lee, S. H. Chen and M. B. Chang, ' Review of packed-bed plasma reactor for ozone generation and air pollution control ', Ind. Eng. Chem. Res., 47 (7), 2122-2130 (2008). 46. U. Roland, F. Holzer and E. D. Kopinke, ' Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds Part 2. Ozone decomposition and deactivation of gamma-Al2O3 ', Appl. Catal. B- Environ., 58 (3-4), 217-226 (2005). 47. A. Von Engel, 'Ionized Gases ', American Inst. of Physics, (1997). 48. J. Choi, F. Iza, J. K. Lee and C. M. Ryu, ' Electron and ion kinetics in a DC microplasma at atmospheric pressure ', IEEE Trans. Plasma Sci., 35 (5), 1274- 1278 (2007). 49. K. Matra, H. Furuta and A. Hatta, ' Current-voltage characteristics of DC discharge in micro gas jet injected into vacuum environment ', Journal of Physics: Conference Series, 441 (1), 012021 (2013). 50. J. M. Thomas, N. R. Walker, S. A. Cooke and M. C. L. Gerry, ' Microwave spectra and structures of KrAuF, KrAgF, and KrAgBr; Kr-83 nuclear quadrupole coupling and the nature of noble gas-noble metal halide bonding ', J. Am. Chem. Soc., 126 (4), 1235-1246 (2004). 153 51. E. B. M. Steers, P. Šmid, V. Hoffmann and Z. Weiss, ' The effects of traces of molecular gases (H2 , N2 & O2 ) in glow discharges in noble gases ', Journal of Physics: Conference Series, 133 (1), 012020 (2008). 52. T. Martens, A. Bogaerts, W. J. M. Brok and J. V. Dijk, ' The dominant role of impurities in the composition of high pressure noble gas plasmas ', Appl. Phys. Lett., 92 (4), 041504 (2008). 53. F. Iza and J. A. Hopwood, ' Low-power microwave plasma source based on a microstrip split-ring resonator ', IEEE Trans. Plasma Sci., 31 (4), 782-787 (2003). 54. J. C. T. Eijkel, H. Stoeri and A. Manz, ' A molecular emission detector on a chip employing a direct current microplasma ', Anal. Chem., 71 (14), 2600-2606 (1999). 55. J. W. Frame, D. J. Wheeler, T. A. DeTemple and J. G. Eden, ' Microdischarge devices fabricated in silicon ', Appl. Phys. Lett., 71 (9), 1165-1167 (1997). 56. S. J. Park, J. Chen, C. Liu and J. G. Eden, ' Silicon microdischarge devices having inverted pyramidal cathodes: Fabrication and performance of arrays ', Appl. Phys. Lett., 78 (4), 419-421 (2001). 57. M. Miclea, K. Kunze, U. Heitmann, S. Florek, J. Franzke, K. Niemax, M. Miclea, K. Kunze, U. Heitmann, S. Florek, J. Franzke and K. Niemax, ' Diagnostics and application of the microhollow cathode discharge as an analytical plasma ', J. Phys. D-Appl. Phys., 38 (11), 1709-1715 (2005). 58. M. Moselhy and K. H. Schoenbach, ' Excimer emission from cathode boundary layer discharges ', J. Appl. Phys., 95 (4), 1642-1649 (2004). 59. R. H. Stark and K. H. Schoenbach, ' Direct current glow discharges in atmospheric air ', Appl. Phys. Lett., 74 (25), 3770-3772 (1999). 60. R. M. Sankaran, D. Holunga, R. C. Flagan and K. P. Giapis, ' Synthesis of blue luminescent Si nanoparticles using atmospheric-pressure microdischarges ', Nano Lett., 5 (3), 537-541 (2005). 61. K. H. Schoenbach, A. El-Habachi, M. M. Moselhy, W. H. Shi and R. H. Stark, ' Microhollow cathode discharge excimer lamps ', Physics of Plasmas, 7 (5), 2186- 2191 (2000). 62. F. Adler, E. Davliatchine and E. Kindel, ' Comprehensive parameter study of a micro-hollow cathode discharge containing xenon ', J. Phys. D-Appl. Phys., 35 (18), 2291-2297 (2002). 154 63. M. Radmilovic-Radjenovic, J. K. Lee, F. Iza and G. Y. Park, ' Particle-in-cell simulation of gas breakdown in microgaps ', J. Phys. D-Appl. Phys., 38 (6), 950- 954 (2005). 64. E. Hourdakis, G. W. Bryant and N. M. Zimmerman, ' Electrical breakdown in the microscale: Testing the standard theory ', J. Appl. Phys., 100 (12), 6 (2006). 65. W. F. Gale, T. C. Totemeier and C. J. Smithells, 'Smithells metals reference book ', Elsevier Butterworth-Heinemann, Boston, (2004). 66. W. S. Boyle and P. Kisliuk, ' Departure from Paschen's Law of Breakdown in Gases ', Physical Review, 97 (2), 255-259 (1955). 67. C. G. Wilson and Y. B. Gianchandani, ' Spectral detection of metal contaminants in water using an on-chip microglow discharge ', IEEE Trans. Electron Devices, 49 (12), 2317-2322 (2002). 68. L. L. Raja, P. L. Varghese and D. E. Wilson, ' Modeling of the electrogun metal vapor plasma discharge ', J. Thermophys. Heat Transf., 11 (3), 353-360 (1997). 69. K. H. Schoenbach, A. ElHabachi, W. H. Shi and M. Ciocca, ' High-pressure hollow cathode discharges ', Plasma Sources Sci. Technol., 6 (4), 468-477 (1997). 70. R. H. Stark and K. H. Schoenbach, ' Direct current high-pressure glow discharges ', J. Appl. Phys., 85 (4), 2075-2080 (1999). 71. G. Schaefer and K. Schoenbach, in Physics and Applications of Pseudosparks, Springer, 1990, pp. 55-76. 72. A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn and R. F. Hicks, ' The atmospheric-pressure plasma jet: a review and comparison to other plasma sources ', IEEE Trans. Plasma Sci., 26 (6), 1685-1694 (1998). 73. J. J. Shi, X. T. Deng, R. Hall, J. D. Punnett and M. G. Kong, ' Three modes in a radio frequency atmospheric pressure glow discharge ', J. Appl. Phys., 94 (10), 6303-6310 (2003). 74. A. Bass, C. Chevalier and M. W. Blades, ' A capacitively coupled microplasma (CC mu P) formed in a channel in a quartz wafer ', J. Anal. At. Spectrom., 16 (9), 919-921 (2001). 75. H. Yoshiki and Y. Horiike, ' Capacitively coupled microplasma source on a chip at atmospheric pressure ', Jpn. J. Appl. Phys. Part 2 - Lett., 40 (4A), L360-L362 (2001). 76. D. W. Liu, J. J. Shi and M. G. Kong, ' Electron trapping in radio-frequency 155 atmospheric-pressure glow discharges ', Appl. Phys. Lett., 90 (4), 3 (2007). 77. M. Moravej and R. F. Hicks, ' Atmospheric plasma deposition of coatings using a capacitive discharge source ', Chemical Vapor Deposition, 11 (11-12), 469-476 (2005). 78. K. Taniguchi, T. Fukasawa, H. Yoshiki and Y. Horiike, ' Generation of integrated atmospheric-pressure microplasmas ', Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap., 42 (10), 6584-6589 (2003). 79. X. Yang, M. Moravej, G. R. Nowling, S. E. Babayan, J. Panelon, J. P. Chang and R. F. Hicks, ' Comparison of an atmospheric pressure, radio-frequency discharge operating in the alpha and gamma modes ', Plasma Sources Sci. Technol., 14 (2), 314-320 (2005). 80. S. Y. Moon, J. K. Rhee, D. B. Kim and W. Choe, ' Alpha, gamma, and normal, abnormal glow discharge modes in radio-frequency capacitively coupled discharges at atmospheric pressure ', Physics of Plasmas, 13 (3), 6 (2006). 81. R. Smeets, L. van der Sluis, M. Kapetanovic, D. F. Peelo and A. Janssen, 'Switching in electrical transmission and distribution systems ', Wiley, (2014). 82. M. S. Benilov, ' Understanding and modelling plasma-electrode interaction in high-pressure arc discharges: a review ', J. Phys. D-Appl. Phys., 41 (14), 30 (2008). 83. J. J. Shi, D. W. Liu and M. G. Kong, ' Plasma stability control using dielectric barriers in radio-frequency atmospheric pressure glow discharges ', Appl. Phys. Lett., 89 (8), 3 (2006). 84. A. Tanaka, Y. Shimizu, Y. Seyama, K. Nagasaka, R. Kondo, H. Oshima, S. Eguchi and H. Kanai, ' Spin-valve heads in the current-perpendicular-to-plane mode for ultrahigh-density. recording ', Magnetics, IEEE Transactions on, 38 (1), 84-88 (2002). 85. P. Chabert and N. Braithwaite, 'Physics of radio-frequency plasmas ', Cambridge University Press, (2011). 86. J. Park, I. Henins, H. W. Herrmann and G. S. Selwyn, ' Gas breakdown in an atmospheric pressure radio-frequency capacitive plasma source ', J. Appl. Phys., 89 (1), 15-19 (2001). 87. S. K. Ahn, S. J. You and H. Y. Chang, ' Driving frequency effect on the electron energy distribution function in capacitive discharge under constant discharge 156 power condition ', Appl. Phys. Lett., 89 (16), 3 (2006). 88. Y. Yin, J. Messier and J. A. Hopwood, ' Miniaturization of inductively coupled plasma sources ', Plasma Science, IEEE Transactions on, 27 (5), 1516-1524 (1999). 89. T. Ito and K. Terashima, ' Thermoelectron-enhanced micrometer-scale plasma generation ', Appl. Phys. Lett., 80 (15), 2648-2650 (2002). 90. T. Ichiki, T. Koidesawa and Y. Horiike, ' An atmospheric-pressure microplasma jet source for the optical emission spectroscopic analysis of liquid sample ', Plasma Sources Sci. Technol., 12 (4), S16-S20 (2003). 91. D. M. Manos and D. L. Flamm, 'Plasma etching: an introduction ', Elsevier Science, (1989). 92. J. Hopwood, ' Review of inductively coupled plasmas for plasma processing ', Plasma Sources Sci. Technol., 1 (2), 109-116 (1992). 93. F. Iza and J. Hopwood, ' Influence of operating frequency and coupling coefficient on the efficiency of microfabricated inductively coupled plasma sources ', Plasma Sources Sci. Technol., 11 (3), 229-235 (2002). 94. J. Hopwood, O. Minayeva and Y. Yin, ' Fabrication and characterization of a micromachined 5 mm inductively coupled plasma generator ', J. Vac. Sci. Technol. B, 18 (5), 2446-2451 (2000). 95. J. Hopwood and F. Iza, ' Ultrahigh frequency microplasmas from 1 pascal to 1 atmosphere ', J. Anal. At. Spectrom., 19 (9), 1145-1150 (2004). 96. J. Hopwood, F. Iza, S. Coy and D. B. Fenner, ' A microfabricated atmospheric- pressure microplasma source operating in air ', J. Phys. D-Appl. Phys., 38 (11), 1698-1703 (2005). 97. A. M. Bilgic, E. Voges, U. Engel and J. A. C. Broekaert, ' A low-power 2.45 GHz microwave induced helium plasma source at atmospheric pressure based on microstrip technology ', J. Anal. At. Spectrom., 15 (6), 579-580 (2000). 98. A. M. Bilgic, U. Engel, E. Voges, M. Kuckelheim and J. A. C. Broekaert, ' A new low-power microwave plasma source using microstrip technology for atomic emission spectrometry ', Plasma Sources Sci. Technol., 9 (1), 1-4 (2000). 99. F. Iza and J. A. Hopwood, ' Rotational, vibrational, and excitation temperatures of a microwave-frequency microplasma ', IEEE Trans. Plasma Sci., 32 (2), 498- 504 (2004). 157 100. F. Iza and J. Hopwood, ' Split-ring resonator microplasma: microwave model, plasma impedance and power efficiency ', Plasma Sources Sci. Technol., 14 (2), 397-406 (2005). 101. A. Kono, T. Sugiyama, T. Goto, H. Furuhashi and Y. Uchida, ' Production of CW high-density non-equilibrium plasma in the atmosphere using microgap discharge excited by microwave ', Jpn. J. Appl. Phys. Part 2 - Lett. Express Lett., 40 (3B), L238-L241 (2001). 102. R. Stonies, S. Schermer, E. Voges and J. A. C. Broekaert, ' A new small microwave plasma torch ', Plasma Sources Sci. Technol., 13 (4), 604-611 (2004). 103. S. Schermer, N. H. Bings, A. M. Bilgic, R. Stonies, E. Voges and J. A. C. Broekaert, ' An improved microstrip plasma for optical emission spectrometry of gaseous species ', Spectroc. Acta Pt. B-Atom. Spectr., 58 (9), 1585-1596 (2003). 104. J. Pollak, M. Moisan and Z. Zakrzewski, ' Long and uniform plasma columns generated by linear field-applicators based on stripline technology ', Plasma Sources Sci. Technol., 16 (2), 310-323 (2007). 105. F. Iza and J. K. Lee, ' Low-pressure plasma generation inside slender tubes ', Comput. Phys. Commun., 177 (1-2), 72-75 (2007). 106. H. Fujiyama, ' Inner coating of long-narrow tube by plasma sputtering ', Surface & Coatings Technology, 131 (1-3), 278-283 (2000). 107. R. Hippler, 'Low temperature plasmas : fundamentals, technologies, and techniques ', John Wiley, Chichester, (2008). 108. J. P. Boeuf, ' Plasma display panels: physics, recent developments and key issues ', J. Phys. D-Appl. Phys., 36 (6), R53-R79 (2003). 109. M. Miclea, K. Kunze, G. Musa, J. Franzke and K. Niemax, ' The dielectric barrier discharge - a powerful microchip plasma for diode laser spectrometry ', Spectroc. Acta Pt. B-Atom. Spectr., 56 (1), 37-43 (2001). 110. O. Sakai, Y. Kishimoto and K. Tachibana, ' Integrated coaxial-hollow micro dielectric-barrier-discharges for a large-area plasma source operating at around atmospheric pressure ', J. Phys. D-Appl. Phys., 38 (3), 431-441 (2005). 111. K. Becker, A. Koutsospyros, S. M. Yin, C. Christodoulatos, N. Abramzon, J. C. Joaquin and G. Brelles-Marino, ' Environmental and biological applications of microplasmas ', Plasma Phys. Control. Fusion, 47, B513-B523 (2005). 112. K. F. Chen, N. P. Ostrom, S. J. Park and J. G. Eden, ' One quarter million (500x500) 158 pixel arrays of silicon microcavity plasma devices: Luminous efficacy above 6 lumens/watt with Ne/50% Xe mixtures and a green phosphor ', Appl. Phys. Lett., 88 (6), 3 (2006). 113. M. Teschke, J. Kedzierski, E. G. Finantu-Dinu, D. Korzec and J. Engemann, ' High-speed photographs of a dielectric barrier atmospheric pressure plasma jet ', IEEE Trans. Plasma Sci., 33 (2), 310-311 (2005). 114. I. Muller, C. Punset, E. Ammelt, H. G. Purwins and J. P. Boeuf, ' Self-organized filaments in dielectric barrier glow discharges ', IEEE Trans. Plasma Sci., 27 (1), 20-21 (1999). 115. J. Guikema, N. Miller, J. Niehof, M. Klein and M. Walhout, ' Spontaneous pattern formation in an effectively one-dimensional dielectric-barrier discharge system ', Physical Review Letters, 85 (18), 3817-3820 (2000). 116. L. F. Dong, F. C. Liu, S. H. Liu, Y. F. He and W. L. Fan, ' Observation of spiral pattern and spiral defect chaos in dielectric barrier discharge in argon/air at atmospheric pressure ', Physical Review E, 72 (4), 8 (2005). 117. U. Kogelschatz, ' Dielectric-barrier discharges: their history, discharge physics, and industrial applications ', Plasma Chem. Plasma Process., 23 (1), 1-46 (2003). 118. M. Klein, N. Miller and M. Walhout, ' Time-resolved imaging of spatiotemporal patterns in a one-dimensional dielectric-barrier discharge system ', Physical Review E, 64 (2), 5 (2001). 119. F. Massines, A. Rabehi, P. Decomps, R. B. Gadri, P. Segur and C. Mayoux, ' Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier ', J. Appl. Phys., 83 (6), 2950-2957 (1998). 120. A. S. Chiper, V. Anita, C. Agheorghiesei, V. Pohoata, M. Anita and G. Popa, ' Spectroscopic diagnostics for a DBD plasma in He/Air and He/N-2 gas mixtures ', Plasma Process. Polym., 1 (1), 57-62 (2004). 121. G. Nersisyan and W. G. Graham, ' Characterization of a dielectric barrier discharge operating in an open reactor with flowing helium ', Plasma Sources Sci. Technol., 13 (4), 582-587 (2004). 122. A. Fridman, A. Chirokov and A. Gutsol, ' Non-thermal atmospheric pressure discharges ', J. Phys. D-Appl. Phys., 38 (2), R1-R24 (2005). 123. D. B. Kim, J. K. Rhee, S. Y. Moon and W. Choe, ' Feasibility study of material surface modification by millimeter size plasmas produced in a pin to plane 159 electrode configuration ', Thin Solid Films, 515 (12), 4913-4917 (2007). 124. Y. Sakiyama and D. B. Graves, ' Corona-glow transition in the atmospheric pressure RF-excited plasma needle ', J. Phys. D-Appl. Phys., 39 (16), 3644-3652 (2006). 125. Y. Sakiyama and D. B. Graves, ' Nonthermal atmospheric rf plasma in one- dimensional spherical coordinates: Asymmetric sheath structure and the discharge mechanism ', J. Appl. Phys., 101 (7), 9 (2007). 126. Z. Q. Yu, K. Hoshimiya, J. D. Williams, S. F. Polvinen and G. J. Collins, ' Radio- frequency-driven near atmospheric pressure microplasma in a hollow slot electrode configuration ', Appl. Phys. Lett., 83 (5), 854-856 (2003). 127. E. Moreau, C. Louste, G. Artana, M. Forte and G. Touchard, ' Contribution of plasma control technology for aerodynamic applications ', Plasma Process. Polym., 3 (9), 697-707 (2006). 128. E. Stoffels, A. J. Flikweert, W. W. Stoffels and G. M. W. Kroesen, ' Plasma needle: a non-destructive atmospheric plasma source for fine surface treatment of (bio)materials ', Plasma Sources Sci. Technol., 11 (4), 383-388 (2002). 129. Y. C. Hong, S. C. Cho and H. S. Uhm, ' Twin injection-needle plasmas at atmospheric pressure ', Appl. Phys. Lett., 90 (14), 3 (2007). 130. H. Yoshiki, K. Taniguchi and Y. Horiike, ' Localized removal of a photoresist by atmospheric pressure micro-plasma jet using RF corona discharge ', Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap., 41 (9), 5797-5798 (2002). 131. J. Salge, ' Plasma-assisted deposition at atmospheric pressure ', Surface & Coatings Technology, 80 (1-2), 1-7 (1996). 132. G. Borcia, C. A. Anderson and N. M. D. Brown, ' Dielectric barrier discharge for surface treatment: application to selected polymers in film and fibre form ', Plasma Sources Sci. Technol., 12 (3), 335-344 (2003). 133. N. De Geyter, R. Morent and C. Leys, ' Surface modification of a polyester non- woven with a dielectric barrier discharge in air at medium pressure ', Surface & Coatings Technology, 201 (6), 2460-2466 (2006). 134. G. Borcia, C. A. Anderson and N. M. D. Brown, ' Surface treatment of natural and synthetic textiles using a dielectric barrier discharge ', Surface & Coatings Technology, 201 (6), 3074-3081 (2006). 135. L. G. Tang and J. L. Kardos, ' A review of methods for improving the interfacial 160 adhesion between carbon fiber and polymer matrix ', Polym. Compos., 18 (1), 100-113 (1997). 136. N. Dumitrascu and C. Borcia, ' Adhesion properties of polyamide-6 fibres treated by dielectric barrier discharge ', Surface & Coatings Technology, 201 (3-4), 1117- 1123 (2006). 137. C. S. Ren, D. Z. Wang and Y. N. Wang, ' Graft co-polymerization of acrylic acid onto the linen surface induced by DBD in air ', Surface & Coatings Technology, 201 (6), 2867-2870 (2006). 138. L. C. Vander Wielen and A. J. Ragauskas, ' Grafting of acrylamide onto cellulosic fibers via dielectric-barrier discharge ', European Polymer Journal, 40 (3), 477- 482 (2004). 139. L. C. Vander Wielen and A. J. Ragauskas, ' Dielectric-barrier discharge initiated grafting to enhance fiber charge ', Chem. Eng. Commun., 193 (6), 683-688 (2006). 140. G. Borcia, N. M. D. Brown, D. Dixon and R. McIlhagger, ' The effect of an air- dielectric barrier discharge on the surface properties and peel strength of medical packaging materials ', Surface & Coatings Technology, 179 (1), 70-77 (2004). 141. R. K. Virk, G. N. Ramaswamy, M. Bourham and B. L. Bures, ' Plasma and antimicrobial treatment of nonwoven fabrics for surgical gowns ', Text. Res. J., 74 (12), 1073-1079 (2004). 142. R. Morent, N. De Geyter, J. Verschuren, K. De Clerck, P. Kiekens and C. Leys, ' Non-thermal plasma treatment of textiles ', Surface & Coatings Technology, 202 (14), 3427-3449 (2008). 143. O. Goossens, E. Dekempeneer, D. Vangeneugden, R. Van de Leest and C. Leys, ' Application of atmospheric pressure dielectric barrier discharges in deposition, cleaning and activation ', Surface & Coatings Technology, 142, 474-481 (2001). 144. R. N. Kinman and G. Rempel, ' Water and wastewater disinfection with ozone: a critical review ', C R C Critical Reviews in Environmental Control, 5 (1), 141- 152 (1975). 145. U. Kogelschatz, B. Eliasson and W. Egli, ' Dielectric-barrier discharges. principle and applications ', J. Phys. IV, 7 (C4), 47-66 (1997). 146. B. Eliasson, M. Hirth and U. Kogelschatz, ' Ozone synthesis oxygen in dielectric barrier discharges ', J. Phys. D-Appl. Phys., 20 (11), 1421-1437 (1987). 147. U. Kogelschatz, B. Eliasson and W. Egli, ' From ozone generators to flat 161 television screens: history and future potential of dielectric-barrier discharges ', Pure Appl. Chem., 71 (10), 1819-1828 (1999). 148. D. L. Bitzer and H. G. Slottow, in Proceedings of the November 7-10, 1966, fall joint computer conference (ACM, San Francisco, California, 1966), pp. 541-547. 149. E. Clothiaux, J. Koropchak and R. Moore, ' Decomposition of an organophosphorus material in a silent electrical discharge ', Plasma Chem. Plasma Process., 4 (1), 15-20 (1984). 150. K. Urashima, J. S. Chang and T. Ito, ' Reduction of NOx from combustion flue gases by superimposed barrier discharge plasma reactors ', IEEE Trans. Ind. Appl., 33 (4), 879-886 (1997). 151. M. B. Chang, H. M. Lee, F. L. Wu and C. R. Lai, ' Simultaneous removal of nitrogen oxide/nitrogen dioxide/sulfur dioxide from gas streams by combined plasma scrubbing technology ', J. Air Waste Manage. Assoc., 54 (8), 941-949 (2004). 152. G. Xiao, W. P. Xu, R. B. Wu, M. J. Ni, C. M. Du, X. Gao, Z. Y. Luo and K. F. Cen, ' Non-thermal plasmas for VOCs abatement ', Plasma Chem. Plasma Process., 34 (5), 1033-1065 (2014). 153. R. Morent, C. Leys, J. Dewulf, D. Neirynck, J. Van Durme and H. Van Langenhove, ' DC-excited non-thermal plasmas for VOC abatement ', J. Adv. Oxid. Technol., 10 (1), 127-136 (2007). 154. A. M. Vandenbroucke, R. Morent, N. De Geyter and C. Leys, ' Non-thermal plasmas for non-catalytic and catalytic VOC abatement ', J. Hazard. Mater., 195, 30-54 (2011). 155. A. Ogata, D. Ito, K. Mizuno, S. Kushiyama and T. Yamamoto, ' Removal of dilute benzene using a zeolite-hybrid plasma reactor ', IEEE Trans. Ind. Appl., 37 (4), 959-964 (2001). 156. J. Y. Ban, Y. H. Son, M. Kang and S. J. Choung, ' Highly concentrated toluene decomposition on the dielectric barrier discharge (DBD) plasma-photocatalytic hybrid system with Mn-Ti-incorporated mesoporous silicate photocatalyst (Mn- Ti-MPS) ', Appl. Surf. Sci., 253 (2), 535-542 (2006). 157. C. L. Chang and T. S. Lin, ' Decomposition of toluene and acetone in packed dielectric barrier discharge reactors ', Plasma Chem. Plasma | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53822 | - |
| dc.description.abstract | 本實驗利用電力驅動低成本可撓式常壓微電漿產生系統(Microplasma generationdevices, MGD) 以產生維度限制在小於 1mm 之電漿進行兩大部份之實驗研究,而該 MGD 為一介電質放電型電漿系統,主要是由雙層銅箔及玻璃纖維介電質所組成,且以碳粉轉印法及溼式蝕刻進行電漿圖案製作,相較於傳統半導體之圖樣製作方式,本作法之優點為低成本、製作時間短、圖樣可客製化,且其一重要特色為可大量製作,尤其有利於實驗開發階段之大量研究。
第一部為利用MGD進行氣體轉換研究,本實驗主要研究氣體為二氧化碳(CO2),使之經由電漿處理後,產生主要產物如一氧化碳(CO) 和氧氣(O2) 等氣體。產物分析則以氣相層析儀及 Lissajous 圖形分別計算產物 CO 濃度和電漿消耗功率,並藉此獲得電漿裝置之能量效率及 CO2 之轉化率。實驗改變電源供應頻率、CO2 體積流率,及電極幾何參數如:單/雙側電漿產生及平坦式/可撓式電極等,以觀察並比較其結果。實驗結果可得出該系統之最適化操作參數,其中,較高之電源供應頻率、較快速之 CO2 體積流率,以及具撓曲電極之電漿裝置,都將具有較高之能量效率值(最高約為 8.95 %,X 值最高則約為 1.61 %),且均較以傳統方式轉換CO2氣體製程之能量效率值(約 5 %) 更有效率。 第二部份則將上述MGD另外與微流道裝置(Microchanneldevice, MCD) 進行結合,並由 MCD 之翻模製作及兩裝置間之接合等開始著手,實驗中 MCD 之翻模主要以3D列印翻模主體,列印材料則為聚乳酸(Polylacticacid, PLA),MCD 之基材則使用聚二甲基矽氧烷(Poly(dimethylsiloxane), PDMS),黏合方式則為一般市售雙面膠。其後,進一步探討該結合裝置於氣液相分離程序和液相流道調換等之應用。於氣液相分離程序中,僅發現液相流體較喜好流經電漿改質後之微流道,而尚無法成功分離氣液相微流體;於液相流道調換中,則可成功使微流體於MCD中改變其流動方向,並可人為控制該流體使其流經特定微流道。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:30:35Z (GMT). No. of bitstreams: 1 ntu-104-R02524103-1.pdf: 7041362 bytes, checksum: cb62dacc7d98787dfb0865754156d9a9 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 誌謝 ................................................................................................................................... I
中文摘要 ......................................................................................................................... III ABSTRACT ..................................................................................................................... V 目錄 ............................................................................................................................... VII 圖目錄 ............................................................................................................................ XI 表目錄 ........................................................................................................................... XV 第 一 章 緒論............................................................................................................ 1 1.1 前言 ................................................................................................................ 1 1.2 研究動機與目標 ............................................................................................ 2 1.3 論文總覽 ........................................................................................................ 3 第 二 章 文獻回顧.................................................................................................... 5 2.1 電漿簡介 ........................................................................................................ 5 2.1.1 彈性與非彈性碰撞 ............................................................................... 5 2.1.2 電漿產生機制 ....................................................................................... 6 2.1.3 非熱平衡電漿 ..................................................................................... 10 2.1.4 氣體崩潰電壓 ..................................................................................... 11 2.1.5 低壓電漿及常壓電漿 ......................................................................... 15 2.2 常壓微電漿放電系統 .................................................................................. 16 2.2.1 微電漿系統之簡介 ............................................................................. 16 2.2.2 微電漿系統之種類及其應用 ............................................................. 18 2.3 介電質放電型電漿系統 .............................................................................. 29 2.3.1 介電質放電型電漿系統之簡介及原理 ............................................. 29 2.3.2 介電質放電型電漿系統之應用 ......................................................... 34 2.4 氣體轉換反應 .............................................................................................. 39 2.4.1 傳統製程之氣體轉換 ......................................................................... 39 2.4.2 常壓電漿製程之氣體轉換 ................................................................. 39 2.5 電漿輔助氣體轉換反應:二氧化碳 .......................................................... 45 2.5.1 二氧化碳之簡介 ................................................................................. 45 2.5.2 以微電漿產生裝置進行二氧化碳氣體轉換之原理 ......................... 46 2.5.3 以微電漿產生裝置進行二氧化碳氣體轉換之裝置 ......................... 49 2.6 微流道及微流體簡介 .................................................................................. 54 2.6.1 微型化 ................................................................................................. 54 2.6.2 微流體及微流道 ................................................................................. 54 2.6.3 微流體之流動 ..................................................................................... 57 2.6.4 微流道裝置之應用 ............................................................................. 62 2.7 結合微流道之元件及系統 .......................................................................... 65 2.7.1 微流道裝置:微流道之翻模程序 ..................................................... 65 2.7.2 微流道裝置:界面接合程序 ............................................................. 69 2.7.3 微流道內之氣液相流動型態 ............................................................. 72 2.7.4 微流道之氣液相分離程序 ................................................................. 75 2.7.5 微流道之液相流道調換 ..................................................................... 79 第 三 章 實驗設備與架構 ..................................................................................... 83 3.1 銅箔基板微電漿產生裝置 .......................................................................... 83 3.1.1 銅箔基板微電漿產生裝置之製備 ..................................................... 83 3.1.2 以銅箔基板微電漿產生裝置進行氣體轉換之實驗設備 ................. 84 3.2 銅箔基板微電漿產生裝置結合微流道系統 .............................................. 89 3.2.1 微流道系統之製備 ............................................................................. 89 3.2.2 銅箔基板微電漿產生裝置結合微流道系統之製備 ......................... 92 3.2.3 銅箔基板微電漿產生裝置結合微流道系統之實驗裝置 ................. 93 3.3 電漿檢測 ...................................................................................................... 95 3.3.1 電性檢測 ............................................................................................. 95 3.3.2 光學檢測 ............................................................................................. 97 3.4 檢測分析設備 .............................................................................................. 98 3.4.1 氣體轉換產物之定量分析檢測 ......................................................... 98 3.4.2 微電漿系統結合微流道裝置之檢測 ............................................... 101 第 四 章 實驗結果與討論 ................................................................................... 103 4.1 銅箔基板介電質放電型電漿產生裝置:二氧化碳轉換 ........................ 103 4.1.1 銅箔基板介電質放電型電漿產生裝置 ........................................... 103 4.1.2 電源供應頻率之影響 ....................................................................... 104 4.1.3 二氧化碳體積流率之影響 ............................................................... 109 4.1.4 電極單側產生電漿和雙側產生電漿之比較 ................................... 113 4.1.5 平坦式電極和可撓式電極之比較 ................................................... 119 4.1.6 銅箔基板介電質放電型電漿產生裝置與二氧化碳氣體轉換 ....... 121 4.2 銅箔基板介電質放電型電漿產生裝置:結合微流道系統 .................... 122 4.2.1 微電漿系統結合微流道裝置:親疏水性測試 ............................... 122 4.2.2 微電漿系統結合微流道裝置:微電漿與液體接觸測試 ............... 124 4.2.3 微電漿系統結合微流道裝置之應用:微流道內氣液相分離 ....... 129 4.2.4 微電漿系統結合微流道裝置之應用:微流道內液相流道調換 ... 141 第 五 章 結果與未來展望 ................................................................................... 147 第 六 章 參考文獻................................................................................................ 149 | |
| dc.language.iso | zh-TW | |
| dc.subject | 流道調換 | zh_TW |
| dc.subject | 常壓微電漿 | zh_TW |
| dc.subject | 二氧化碳 | zh_TW |
| dc.subject | 氣體轉換 | zh_TW |
| dc.subject | 微流體 | zh_TW |
| dc.subject | gas decomposition | en |
| dc.subject | carbon dioxide | en |
| dc.subject | atmospheric-pressure microplasma | en |
| dc.subject | michannel switching | en |
| dc.subject | microfluidics | en |
| dc.title | 低成本可撓式常壓微電漿產生裝置於微型反應器及微流道之應用 | zh_TW |
| dc.title | Low-cost and Flexible Atmospheric-pressure Microplasma Generation Devices as a Microreactor of CO2 Decomposition and Integrated with PDMS-based Microchannels | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林致廷,許聿翔,康敦彥 | |
| dc.subject.keyword | 常壓微電漿,二氧化碳,氣體轉換,微流體,流道調換, | zh_TW |
| dc.subject.keyword | atmospheric-pressure microplasma,carbon dioxide,gas decomposition,microfluidics,michannel switching, | en |
| dc.relation.page | 175 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-07-30 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 6.88 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
