請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53815完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳誠亮(Cheng-Liang Chen) | |
| dc.contributor.author | Shih-Han Wang | en |
| dc.contributor.author | 王仕翰 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:30:24Z | - |
| dc.date.available | 2020-08-28 | |
| dc.date.copyright | 2015-08-28 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-31 | |
| dc.identifier.citation | [1] Verma, M.P. and Arellano, V.M., 2010, GeoSteamNet.2: steam flow simulation in a pipeline. Proceedings Thirty-Fifth Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California. [2] Churchill, S.W., 1977, Friction-factor equation spans all fluid-flow regimes. Chem. Eng. (NY) 84(24), 91–92. [3] Meyer-Pittroff, R., Vesper, H., U.Grigull, 1969, Einige Umkehrfunktionen und N auml;herungsgleichungen zur 1967 IFC Formulation for Industrial Use f uuml;r Wasser und Wasserdampf. Brennstoff - Waerme – Kraft 21, 239-242 (in German). [4] Vukalovich, M.P., Aleksandrov, A.A. and Trachtengerts, M.S., 1968, Equations of State for Superheated Steam for Industrial Computations Using Electronic Computers. Teploenergetika 9, 86-90 (in Russian). [5] Rivkin, S.L., and Aleksandrov, A.A., 1980, Thermal properties of water and steam. Energia, Moskva (in Russian). [6] Bird, R.B., Stewart, W.E. and Lightfoot, E.N., 2007, Transport Phenomena (Revised Second Edition ed.), John Wiley Sons, ISBN 978-0-470-11539-8. [7] Perry, R.H., Green, D.W. and Maloney, J.O., 1997, Perry’s chemical engineers’handbook, McGraw-Hill, ISBN 978-0-07-115448-2. [8] Cross, H., Analysis of flow in networks of conduits or conductors. University of Illinois Bulletin, 1936, No. 22. [9] Annual Report 2013 (Bureau of Energy, Ministry of Economic Affairs, R.O.C.). [10] http://web3.moeaboe.gov.tw/oil102/, Bureau of Energy, Ministry of Economic Affairs, R.O.C.. [11] Clancy, L.J., 1975, Aerodynamics, New York: Halsted Press, ISBN 978-0-470-15837-1. [12] Batchelor, G.K., 1967, An introduction to fluid dynamics, Cambridge University Press, ISBN 978-0-521-66396-0. [13] Salmasi, F., Khatibi, R., Ghorbani, M.A., 2012, A study of friction factor formulation in pipes using artificial intelligence techniques and explicit equations. Turkish J. Eng. Env. Sci., 36(2), 121-138. [14] BiaŁecki, R.A., Kruczek, T., 1996, Frictional, diathermal flow of steam in a pipeline. Chemical Engineering Science, 51(19), 4369-4378. [15] Idsinga, W., Todreas, N., Bowring, R., 1977, An assessment of two-phase pressure drop correlations for steam-water systems, Int. J. Multiphase Flow, 3(5), 401-413. [16] Probert, S.D., Yeung, C.M., Chu, C.Y., 1982, Optimising the performance of internally insulated pipelines for conveying superheated steam. Appl. Energy, 12(3), 185-204. [17] Probert, S.D., Chu, C.Y., Yeung, C.M., 1982, A possible alternative approach to the thermal insulation of pipelines. Appl. Energy, 11(1), 15-34. [18] Probert, S.D., Chu, C.Y., 1983, Internally insulated hot-oil pipelines. Appl. Energy, 13(1), 1-13. [19] Garc iacute;a-Guti eacute;rrez, A., Mart iacute;nez-Estrella, J.I., Hern aacute;ndez-Ochoa, A.F., Verma, M.P., Mendoza-Covarrubias, A., Ruiz-Lemus, A., 2009, Development of a numerical hydraulic model of the Los Azufres steam pipeline network. Geothermics, 38(3), 313-325. [20] Luo, X., Yuan, M., Wang, H., Jia, Y., Wu, F., 2012, On steam pipe network modeling and flow rate calculation. Procedia Eng., 29, 1897-1903. [21] Duan, J., Gong, J., Yao, H., Deng, T., Zhou, J., 2014, Numerical modeling for stratified gas-liquid flow and heat transfer in pipeline. Appl. Energy, 115, 83-94. [22] Isaacs, Lewis T., Mills, Kevin G., 1980, Linear theory methods for pipe network analysis. J. Hydraul. Div., 106(7), 1191-1201. [23] Manojlović, V., Arsenović, M., Pajović, V., 1994, Optimized design of a gas-distribution pipeline network, Appl. Energy, 48(3), 217-224. [24] Brkić, D., 2009, An improvement of Hardy Cross method applied on looped spatial natural gas distribution networks, Appl. Energy, 86(7-8), 1290-1300. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53815 | - |
| dc.description.abstract | 本研究由直管與管件個別之質量、動量與能量守恆方程式出發,先探討各元件之功能與其對於蒸氣出口溫度與壓力之影響,進而將其推展至單管蒸汽系統,由各元件之影響來探討其對於溫度與壓力分布之改變。 於環狀網路之研究中,我們採用哈迪•克勞斯法,在嘗試應用哈迪•克勞斯法於水網路之後,我們將其理念與先前之單管蒸汽系統合併,推導出修改過之哈迪•克勞斯法,修改過之哈迪•克勞斯法藉由平均物性與壓力平衡為主要理念,搭配上熱散失與相變化之計算,修改過後之哈迪•克勞斯法適用於含有溫降之可壓縮流體系統中,本研究將此法應用於環狀蒸汽管網之分析。 最後,本研究以修改過之哈迪•克勞斯法來針對大型石化廠之環狀高壓蒸氣管網做分析,此章節探討當煉油廠內某個蒸汽供應單元維修或故障時,不同蒸汽調度策略對於系統之影響,其結果顯示當調度策略不當時將會造成系統中產生管網冷點與單元冷點,本研究提供一種預測之模型,可用以避免管網冷點與單元冷點之現象,亦可用於模擬各種不同架構間之優劣。 | zh_TW |
| dc.description.abstract | This thesis star from straight pipe and fitting with mass, momentum and energyconservation equations to calculate ressure drop and temperature drop of these straight pipe and fitting. Single pipeline system is solved by combined with straight pipes and fittings. By using temperature, pressure and condensate profile, the influence of each straight pipe and fitting are observed. Base on the result of single pipeline system, Hardy-Cross method is modified to deal with steam distribution on looped pipe network. The modified Hardy-Cross method is using pressure balance as main criteria and the density of fluid is variable. Via three cases to prove that modified Hardy-Cross method is usable. Finally, a large-scale refinery is solved by using modified Hardy-Cross method. Three different scenarios and two different strategies are proposed to deal with one of boiler repairing. Via modified Hardy-Cross method, cool points of each scenario and each strategy are indicated. The modified Hardy-Cross method can using to predict steam flow rate and direction in looped steam pipe network. Moreover, via modified Hardy-Cross method, the phenomena of switch of flow direction is found. It can demonstrate situations of cool points and cool units and propose best operating strategy to avoid cool points and cool units. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:30:24Z (GMT). No. of bitstreams: 1 ntu-104-R02524023-1.pdf: 1669295 bytes, checksum: 26faa20a114a436c973c7546d263f7f5 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 摘要 .................................................................................................................................. I Abstract ............................................................................................................................. II Contents .......................................................................................................................... IV Figure Index ................................................................................................................... VII Table Index ....................................................................................................................... X 1 Introduction ................................................................................................................ 1 1.1 Preface .......................................................................................................... 1 1.2 Single Pipeline System and Looped Pipe Network ...................................... 2 1.3 Literature review .......................................................................................... 3 1.3.1 Literature review of single pipeline system ...................................... 3 1.3.2 Literature review of looped pipe network ........................................ 4 1.4 Motivation .................................................................................................... 5 2 Single Pipeline System .............................................................................................. 6 2.1 Preface .......................................................................................................... 6 2.2 Problem Statement ........................................................................................ 6 2.3 Modeling ....................................................................................................... 7 2.3.1 Straight pipe ...................................................................................... 7 2.3.2 Fittings ............................................................................................. 11 2.3.3 Single Pipeline System ................................................................... 14 2.4 Assumptions ............................................................................................... 18 2.5 Example-Single Pipeline System ............................................................... 19 3 Looped Pipe Network .............................................................................................. 22 3.1 Looped Water Pipe Network ...................................................................... 22 3.2 Looped Steam Pipe Network ...................................................................... 29 3.3 Assumptions ............................................................................................... 34 4 Example-Looped Steam Pipe Network .................................................................... 35 4.1 Single-Input and Multi-Outputs ................................................................. 35 4.2 Multi-Inputs and Multi-Outputs ................................................................. 37 4.3 Large-Scale Refinery .................................................................................. 39 4.3.1 Preface ............................................................................................ 39 4.3.2 Overall Structure ............................................................................ 39 4.3.3 Scenario 1 ....................................................................................... 43 4.3.4 Scenario 2 ....................................................................................... 54 4.3.5 Scenario 3 ....................................................................................... 64 4.4 Summary ..................................................................................................... 72 5 Conclusions and Future Works ................................................................................ 73 5.1 Conclusions ................................................................................................ 73 5.2 Future Works .............................................................................................. 74 References ...................................................................................................................... 75 A. Appendix .................................................................................................................. 78 B. Nomenclature ........................................................................................................... 83 | |
| dc.language.iso | en | |
| dc.subject | 高壓蒸氣 | zh_TW |
| dc.subject | 蒸汽集管 | zh_TW |
| dc.subject | 環狀蒸汽管網 | zh_TW |
| dc.subject | 煉油廠 | zh_TW |
| dc.subject | 哈迪‧克勞斯法 | zh_TW |
| dc.subject | 冷點 | zh_TW |
| dc.subject | Looped steam pipe network | en |
| dc.subject | Hardy Cross method | en |
| dc.subject | High pressure steam | en |
| dc.subject | Refinery | en |
| dc.subject | Cool point | en |
| dc.subject | Steam header | en |
| dc.title | 石化廠環狀高壓蒸氣管網之建模與分析研究 | zh_TW |
| dc.title | Modeling and Analysis of A Looped High Pressure Steam Pipeline Network in A Large-scale Refinery | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 錢義隆(I-Lung Chien),吳哲夫(Jeffrey D. Ward),李豪業(Hao-Yeh Lee),李瑞元(Jui-Yuan Lee) | |
| dc.subject.keyword | 哈迪‧克勞斯法,環狀蒸汽管網,高壓蒸氣,煉油廠,冷點,蒸汽集管, | zh_TW |
| dc.subject.keyword | Hardy Cross method,Looped steam pipe network,High pressure steam,Refinery,Cool point,Steam header, | en |
| dc.relation.page | 82 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-07-31 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 1.63 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
