Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53812Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 吳志毅 | |
| dc.contributor.author | Wei-Ting Chen | en |
| dc.contributor.author | 陳威廷 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:30:19Z | - |
| dc.date.available | 2018-07-31 | |
| dc.date.copyright | 2015-07-31 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-31 | |
| dc.identifier.citation | 文獻
1. Vanslyke, C.W.T.a.S.A., Organic electroluminescent diodes. Appl. PHys. Lett. , 1987. 51(12). 2. Jungyun Chang, J.A.a.C.I., Different Energy Transfer Behaviors of Poly (9-Vinylcabazole) and Polyfluorene Derivative Thin Films upon Doping with Triplet Emitters. Journal of the Korean Physical Society, December 2005. 47(6): p. 1028 - 1034. 3. Chi-Yen Lin, Y.-C.L., Wen-Yi Hung, Ken-Tsung Wong, Raymond C. Kwong, Sean C. Xia, Yu-Hung Chen and Chih-I Wu, A thermally cured 9,9-diarylfluorene-based triaryldiamine polymer displaying high hole mobility and remarkable ambient stability. J. Mater. Chem., 2009. 19: p. 3618 - 3623. 4. Min Cai, T.X., et al, Effect of molecular weight on the efficiency of poly(N-vinylcarbazole)-based polymer light-emitting diodes. APPLIED PHYSICS LETTERS, 2011. 99: p. 203302. 5. James S. Swensen , E.P., Amber Von Ruden , Liang Wang , Linda S. Sapochak , and Asanga B. Padmaperuma, Improved Effi ciency in Blue Phosphorescent Organic Light- Emitting Devices Using Host Materials of Lower Triplet Energy than the Phosphorescent Blue Emitter. Adv. Funct. Mater, 2011. 21: p. 3250 - 3258. 6. Shi-Jian Su, T.C., Takashi Takeda, and Junji Kido, Pyridine-Containing Triphenylbenzene Derivatives with High Electron Mobility for Highly Efficient Phosphorescent OLEDs. Adv. Mater, 2008. 20: p. 2125 - 2130. 7. Fei Huang, H.W., Deli Wang, Wei Yang, and Yong Cao, Novel Electroluminescent Conjugated Polyelectrolytes Based on Polyfluorene. Chem. Mater., 2004. 16(4): p. 708 - 716. 8. Chengmei Zhong, S.L., Fei Huang, Hongbin Wu, and Yong Cao, Highly Efficient Electron Injection from Indium Tin Oxide/Cross-Linkable Amino-Functionalized Polyfluorene Interface in Inverted Organic Light Emitting Devices. Chem. Mater., 2011. 23: p. 4870 - 4876. 9. Kiyeol Kwak, K.C., and Sangsig Kim, Role of ZnO nanoparticle-layers in enhancement of the performance of organic light-emitting diodes on plastics. Phys. Status Solidi C, 2014. 2: p. 234 - 237. 10. Hao-Wu Lin, W.-C.L., Jung-Hung Chang, Chih-I Wu, Solution-processed hexaazatriphenylene hexacarbonitrile as a universal hole-injection layer for organic light-emitting diodes. Organic Electronics, 2013. 14. 11. y.c. zhou, j.z., j.m. zhao, s.t. zhang, y.q. zhan, x.z.wang, y.wu, x.m. ding, x.y. hou, Optimal thickness of hole transport layer in doped OLEDs. Appl. Phys. A, 2006. 83: p. 465 - 468. 12. Hou, B.J.Z.X.Y.X., Influence of the thickness of N,N-Bis(naphthalene-1-yl)-N,N-bis(phenyl) benzidine layer on the performance of organic light-emitting diodes. Appl Phys A, 2010. 98: p. 239 - 243. 13. KNUTSON, R.F.C.A.J.R., Mechanism of Fluorescence Concentration Quenching of Carboxyfluorescein in Liposomes: Energy Transfer to Nonfluorescent Dimers. ANALYTICAL BIOCHEMISTRY, 1988. 172: p. 61 - 77. 14. X. H. Yang, F.J., S. Klinger, and D. Neher, Blue polymer electrophosphorescent devices with different electron-transporting oxadiazoles. APPLIED PHYSICS LETTERS, 2006. 88: p. 021107. 15. Liudong Hou, L.D., et al., Efficient solution-processed phosphor-sensitized single-emitting-layer white organic light-emitting devices: fabrication, characteristics, and transient analysis of energy transfer. J. Mater. Chem., 2011. 21: p. 5312 - 5318. 16. Stefan Höfle, T.L., et al, Influence of the Emission Layer Thickness on the Optoelectronic Properties of Solution Processed Organic Light-Emitting Diodes. ACS Photonics, 2014. 1: p. 968 - 973. 17. Fei Huang, H.W., Deli Wang, Wei Yang, and Yong Cao, Novel Electroluminescent Conjugated Polyelectrolytes Based on Polyfluorene. Chem. Mater., 2004. 16: p. 706 - 716. 18. Fei Huang, H.W.a.Y.C., Water/alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices. Chem. Soc. Rev, 2010. 39: p. 2500 - 2521. 19. Zhiming Zhong , Z.H.e.a., Hole-Trapping Effect of the Aliphatic-Amine Based Electron Injection Materials in the Operation of OLEDs to Facilitate the Electron Injection. Adv. Electron. Mater., 2015. 1: p. 1400014. 20. Hongbin We, F.H., et al., Efficient Electron Injection from a Bilayer Cathode Consisting of Aluminum and Alcohol-/Water-Soluble Conjugated Polymers. Adv. Mater., 2004. 16(20). 21. Ding An, J.Z., et al, White emission polymer light-emitting devices with efficient electron injection from alcohol/water-soluble polymer/Al bilayer cathode. Organic Electronics, 2009. 10: p. 299 - 304. 22. Lei Ying , C.-L.H., et al, White Polymer Light-Emitting Devices for Solid-State Lighting: Materials, Devices, and Recent Progress. Adv. Mater, 2014. 26: p. 2459 - 2473. 23. Yong Zhang, F.H., et al, Highly Efficient White Polymer Light-Emitting Diodes Based on Nanometer-Scale Control of the Electron Injection Layer Morphology through Solvent Processing. Adv. Mater, 2008. 20: p. 1565 - 1570. 24. Fei Huang, Y.-H.N., et al, A Conjugated, Neutral Surfactant as Electron-Injection Material for High-Efficiency Polymer Light-Emitting Diodes. Adv. Mater., 2007. 19: p. 2010 - 2014. 25. Jenekhe, T.E.a.S.A., High-performance multilayered phosphorescent OLEDs by solution-processed commercial electron-transport materials. J. Mater. Chem., 2012. 22: p. 4660. 26. Chi-Yen Lin, A.G., et al., Effect of Thermal Annealing on Polymer Light-Emitting Diodes Utilizing Cationic Conjugated Polyelectrolytes as Electron Injection Layers. J. Phys. Chem. C, 2010. 114: p. 15786 - 15790. 27. Wikipedia. Hofmann elimination. 13 May 2015. 28. Hao-Wu Lin, W.-C.L., et al, Solution-processed hexaazatriphenylene hexacarbonitrile as a universal hole-injection layer for organic light-emitting diodes. Organic Electronics, 2013. 14: p. 1204 - 1210. 29. Wei-Chieh Lin, H.-W.L., et al., Efficient solution-processed green and white phosphorescence organic light-emitting diodes based on bipolar host materials. Organic Electronics, 2015. 17: p. 1 -8. 30. Lin-Song Cui, Y.L., et al, Bipolar host materials for high efficiency phosphorescent organic light emitting diodes: tuning the HOMO/LUMO levels without reducing the triplet energy in a linear system. J. Mater. Chem. C, 2013. 1: p. 8177 - 8185. 31. Jin Wook Kim, N.H.K., et al, Study of triplet exciton's energy transfer in white phosphorescent organic light-emitting diodes with multi-doped single emissive layer. Optical Materials, 2015. 40: p. 57 - 62. 32. Dong-Hyun Lee, Y.-P.L., et al, Effect of hole transporting materials in phosphorescent white polymer light-emitting diodes. Organic Electronics, 2010. 11: p. 427 - 433. 33. Han-Cheng Yeh, H.-F.M., All-small-molecule efficient white organic light-emitting diodes by multi-layer blade coating. Organic Electronics, 2012. 13: p. 914 - 918. 34. Ramchandra Pode, S.-J.L., et al., Solution processed efficient orange phosphorescent organic light-emitting device with small molecule host. J. Phys. D: Appl. Phys., 2010. 43: p. 025101. 35. Tengling Ye, S.S., et al., Efficient Phosphorescent Polymer Yellow-Light-Emitting Diodes Based on Solution-Processed Small Molecular Electron Transporting Layer. ACS Appl. Mater. Interfaces, 2011. 3: p. 410 - 416. 36. Zong-You Liu, S.-R.T., et al, Solution-processed small molecular electron transport layer for multilayer polymer light-emitting diodes. Synthetic Metals, 2011. 161: p. 426 - 430. 37. Jia-Da You, S.-R.T., et al., All-solution-processed blue small molecular organic light-emitting diodes with multilayer device structure. Organic Electronics, 2009. 10: p. 1610 - 1614. 38. Alan O'Riordan, E.O.C., Narrow bandwidth red electroluminescence from solution-processed lanthanide-doped polymer thin films. Thin Solid Films, 2005. 491: p. 264 - 269. 39. Zhaokui Wang, Y.L., et al., Direct Comparison of Solution- and Vacuum-Processed Small Molecular Organic Light-Emitting Devices with a Mixed Single Layer. ACS Appl. Mater. Interfaces, 2011. 3: p. 2496 - 2503. 40. 杨少鹏,王利顺,邱晓丽,赵方超,居秀琴,刘素玲, 基于PVK的高色纯度高稳定性有机电致红光器件. CHINESE JOURNAL OF LUM INESCENCE, 2009. 30(6). 41. HongbinWu, J.Z., et al, Efficient Single Active Layer Electrophosphorescent White Polymer Light-Emitting Diodes. Adv. Mater, 2008. 20: p. 696 - 702. 42. Dong-Hyun Lee, e.a., Effect of hole transporting materials in phosphorescent white polymer light-emitting diodes. Organic Electronics, 2010. 11: p. 427 - 433. 43. Guijiang Zhou, W.-Y.W., Recent progress and current challenges in phosphorescent white organic light-emitting diodes (WOLEDs). Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2010. 11: p. 133 - 156. 44. al., X.L.e., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. science, 2009. 324: p. 1312 - 1314. 45. al., A.K.e., Chemical Doping of Large-Area Stacked Graphene Films for Use as Transparent, Conducting Electrodes. acs nano, 2010. 4(7): p. 3839 - 3844. 46. Donghwa Lee, e.a., Highly stable and flexible silver nanowire graphene hybrid transparent conducting electrodes for emerging optoelectronic devices. Nanoscale, 2013. 5: p. 7750 - 7755. 47. Shicai Xu, B.M., et al, Graphene silver nanowire hybrid films as electrodes for transparent and flexible loudspeakers. CrystEngComm, 2014. 16: p. 3532 - 3539. 48. Ruiyi Chen , S.R.D., et al., Co-Percolating Graphene-Wrapped Silver Nanowire Network for High Performance, Highly Stable, Transparent Conducting Electrodes. Adv. Funct. Mater, 2013. 23: p. 5150 - 5158. 49. Donghwa Lee, H.L., et al., High-performance flexible transparent conductive film based on graphene/AgNW/graphene sandwich structure. Carbon, 2015. 81: p. 439 - 446. 50. Rui-Long Zong, e.a., Synthesis and Optical Properties of Silver Nanowire Arrays Embedded in Anodic Alumina Membrane. J. Phys. Chem. B, 2004. 108: p. 16713 - 16716. 51. Wasan A. Musa, e.a., Thickness Effect on the Optical Constants of Poly Methyl Methacrylate (PMMA) Doped by Potassium Iodide. Journal of Al-Nahrain University, 2013. 16(3): p. 119 - 123. 52. Hui Lu, J.L., et al., Inkjet printed silver nanowire network as top electrode for semi-transparent organic photovoltaic devices. APPLIED PHYSICS LETTERS, 2015. 106: p. 093302. 53. Johannes Krantz, e.a., Spray-Coated Silver Nanowires as Top Electrode Layer in Semitransparent P3HT:PCBM-Based Organic Solar Cell Devices. Adv. Funct. Mater, 2013. 23: p. 1711 - 1717. 54. Jung-Yong Lee, S.T.C., et al., Semitransparent Organic Photovoltaic Cells with Laminated Top Electrode. Nano Lett., 2010. 10: p. 1276 - 1279. 55. P. Freitag, A.A.Z., et al., Lambertian white top-emitting organic light emitting device with carbon nanotube cathode. JOURNAL OF APPLIED PHYSICS, 2012. 112: p. 114505. 56. Wenjin Zeng, H.W., et al., Polymer Light-Emitting Diodes with Cathodes Printed from Conducting Ag Paste. Adv. Mater., 2007. 19: p. 810 - 814. 57. Hua Zheng, Y.Z., et al., All-solution processed polymer light-emitting diode displays. NATURE COMMUNICATIONS, 2013. 4: p. 1917. 58. Tatsuro Yamamoto, e.a., Improved electron injection from silver electrode for all solution-processed polymer light-emitting diodes with Cs2CO3:conjugated polyelectrolyte blended interfacial layer. Organic Electronics, 2014. 15: p. 1077 - 1082. 59. Jung-Hung Chang, W.-H.L., et al., Solution-processed transparent blue organic light-emitting diodes with graphene as the top cathode. scientific reports, 2015. 5: p. 9693. 60. Wei-Hsiang Lin, T.-H.C., et al., A Direct and Polymer-Free Method for Transferring Graphene Grown by Chemical Vapor Deposition to Any Substrate. acs nano, 2014. 8(2): p. 1784 - 1791. 61. Nagai, M., Impact of Particulate Contaminants on the Current Leakage Defect in OLED Devices. Journal of The Electrochemical Society, 2007. 154(12): p. J387 - J392. 62. Meerholz, G.L.a.K., Crosslinkable TAPC-Based Hole-Transport Materials for Solution-Processed Organic Light-Emitting Diodes with Reduced Effi ciency Roll-Off. Adv. Funct. Mater., 2013. 23: p. 359 - 365. 63. al., N.A.e., Solution-processed multilayer small-molecule light-emitting devices with high-efficiency white-light emission. NATURE COMMUNICATIONS, 2014. 5: p. 5756. 64. Gebeyehu, D., Highly Efficient p-i-n Type Organic Light-emitting Diodes Using Doping of the Transport and Emission Layers. Ethiop. J. Sci. & Technol., 2014. 7(1): p. 37 - 48. 65. Zhixiong Jiang, e.a., Highly Efficient, Solution Processed Electrofluorescent Small Molecule White Organic Light-Emitting Diodes with a Hybrid Electron Injection Layer. ACS Appl. Mater. Interfaces, 2014. 6: p. 8345 - 8352. 66. al., E.H.L.e., High-Quality Uniform Dry Transfer of Graphene to Polymers. Nano Lett., 2012. 12: p. 102 - 107. 67. Peng You , Z.L.e.a., Efficient Semitransparent Perovskite Solar Cells with Graphene Electrodes. Adv. Mater, 2015. 27: p. 3632 - 3638. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53812 | - |
| dc.description.abstract | 本論文主要著重於使用常見的商業性有機材料,由濕式製程的方式,製作出全濕式製程之有機發光二極體。以磷光發光、正規型元件結構與非水溶性材料(非PEDOT:PSS)等主軸來開發元件架構。
論文可分成三個部分;第一部分(第三章)是僅熱蒸鍍上電極(鋁),其餘有機層皆以濕式製程的方式來製作元件,過程中,經由電洞傳輸層材料選擇與調整、發光層比例與參數之最佳化、導入PF-NR2製作濕式電子注入(傳輸)層,PF-NR2製程之最佳化等步驟,本研究製作出效率可達約8.18 cd/A之標準型藍光全濕式有機層之發光元件。 第二部分(第四章)仍以僅熱蒸鍍上電極(鋁)來製作元件,並由介於發光層與電洞傳輸層間之濕式介面緩衝層設計,與新增加的濕式小分子之電子傳輸層,進一步提升元件之效率,其內容包含:介面緩衝層的材料選用與材料混和測試、濕式電子傳輸層之溶劑選用與材料測試、發光層比例調整、濕式電子傳輸層製程調整與最佳化等,而製作出來的強化型藍光全濕式有機層之發光元件,其效率可達12.78 cd/A,約為標準型元件最高效率的1.56倍。 第三部分(第五章)則分成兩個部分;前半部分著重於將原本元件的藍光發光層(Firpic),加入紅色磷光材料(Ir(piq)2 acac)與綠色磷光材料(Ir(mppy)3)的混雜,調整比例,製作出色座標CIE約(0.31, 0.37)之似白光發光層;後半部分則是將石墨烯與奈米銀線結合,製造出濕式製程之混合上電極(陰極),經量測確定其性質後,嘗試將其應用於標準型元件之中,取代掉熱蒸鍍的鋁電極後,本研究完成了真正的透明全濕式有機發光二極體,其單面收光效率約為1.19 cd/A (雙面收光可能可達2.41 cd/A)。 | zh_TW |
| dc.description.abstract | In this thesis, we focus on fabricating all solution-processed organic light-emitting diode (OLED) with the ordinary commercial materials. Besides, Our OLED device is designed based on conventional structure, phosphorescence emitting materials and all organic layer with water insoluble feature (non-PEDOT:PSS).
The thesis can be break into three parts. For the first part (chapter 3), our purpose is to fabricate solution-processed blue OLED with merely evaporated cathode on top of it (aluminum). We selected and optimized the proper hole transport layer, adjusted the percentage and concentration of the solution recepie in the emission layer. Also, by introducing the noval PF-NR2 materials as our electron injection layer, we successfully produced our standard blue OLED with all-solution processed organic layer. Through fine-tuning of the PF-NR2 fabrication process, the standard device achieved 8.18 cd/A as its highest current efficiency. For the second part (chapter 4), we try to improve the device efficiency of the first part by two means. First, we inserted an solution-processed interlayer between emission layer and hole transport layer to diminish exciton quenching effect. Second, we carfully tested and selected the solvent/electron transport materials combination, in order to fabricate a complete solution-processed electron transport layer upon emission layer. With incorporated solution-processed interlayer and electron transport layer into our OLED device, we enhanced our device performance to 12.78 cd/A. Which is about 1.56 times as much as the standard device in the first part. In the last part (chapter 5), we focused on making white emission layer and replacing evaporated cathode with solution-processed hybrid electrode. Since our previous studies (part 1 & 2) were using Firpic as the luminescent materials. We blended Ir(mppy)3 and Ir(piq)2 acac mateials into emission layer, to bring a white OLED emission layer of CIE (0.31, 0.37) under careful control of the emitting mateials ratio. On the other hand, we fabricate an innovative transparent cathode with simplified design. With the combination of graphene and silver nanowire, we surprisingly discovered a transparant, highly conductive, solution-processed cathode (hybrid electrode) that can be used in organic device. In the end, we literally produced an “all solution-process” transparent OLED, using the hybrid cathode of graphene & silver nanowire. That achieved 1.19 cd/A with one-sided emission measurement. (may be 2.41 cd/A if two-sided emission measured) | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:30:19Z (GMT). No. of bitstreams: 1 ntu-104-R02941050-1.pdf: 10568613 bytes, checksum: 3bd80e6f496d573c70e75de0db070ad3 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 中文摘要 i
Abstract英文摘要 ii 第1章 緒論與簡介 1 1.1 有機發光二極體簡介 1 1.2 有機發光二極體運作原理 2 1.3濕式製程與高分子/小分子OLEDs 5 1.4 研究動機 8 第2章 實驗儀器、材料與步驟 9 2.1 實驗儀器介紹 9 2.2 實驗材料介紹 13 2.3 實驗步驟介紹 23 第3章 利用PF-NR2製作全濕式有機層之OLEDs 26 3.1 實驗介紹 26 3.2 混合PVK與Firpic製作元件發光層 26 3.2.1 發光層混合比例條件測試 29 3.2.2 發光層轉速條件測試 33 3.3 製作PF-NR2之濕式電子注入(傳輸)層 34 3.3.1 PF-NR2濃度條件測試 34 3.3.2 PF-NR2 摻水條件與熱處理測試 37 3.3.3 PF-NR2轉速條件測試 43 3.4 結論 46 第4章 設計濕式之介面緩衝層(Interlayer)與電子傳輸層(electron transport layer) 以提升元件效能 49 4.1 實驗介紹 49 4.2 介面緩衝層材料測試與探討 49 4.2.1 介面緩衝層材料測試與比較 52 4.2.2 混合材料嘗試與比較 57 4.3 製作濕式製程之電子傳輸層 61 4.3.1 以簡易結構測試傳輸層之溶劑組合 62 4.3.2 轉速調整與主動層參數更動測試 65 4.3.2 電子傳輸層材料測試與混合製作 70 4.3.3整合與調整介面層與電子傳輸層 74 4.4 結論 79 4.4.1 備註:元件老化測試 80 第5章 全濕式製程之有機發光二極體 81 5.1 實驗介紹 81 5.2 RGB發光材料混合簡易白光元件 81 5.2.1 R、G、B 元件測試 82 5.2.2 RGB混合比例調整 84 5.3 濕式陰極(上電極)製作與元件整合 89 5.3.1 石墨烯與奈米銀線之混合電極製備 89 5.3.2 混合電極之性質量測與探討 91 5.3.3 陰極與元件整合測試 97 5.4 結論 103 第6章 總結與未來展望 106 6.1 總結 106 6.2 未來展望 108 參考文獻 110 | |
| dc.language.iso | zh-TW | |
| dc.subject | 商業用材料 | zh_TW |
| dc.subject | 有機發光二極體 | zh_TW |
| dc.subject | 濕式製程 | zh_TW |
| dc.subject | 白光 | zh_TW |
| dc.subject | 石墨烯 | zh_TW |
| dc.subject | 奈米銀線 | zh_TW |
| dc.subject | solution-process | en |
| dc.subject | white OLED | en |
| dc.subject | Organic light-emitting diode (OLED) | en |
| dc.subject | commercial materials | en |
| dc.subject | silver nanowire (Ag nanowire) | en |
| dc.subject | graphene | en |
| dc.title | 利用濕式製程之小分子電子傳輸層提升元件效率及實現全濕式製程之有機發光二極體研究 | zh_TW |
| dc.title | Enhance efficiency of OLEDs by solution-processed small molecule electron transport layer & achieve all solution-processed OLEDs | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林皓武,張永亭 | |
| dc.subject.keyword | 有機發光二極體,濕式製程,白光,石墨烯,奈米銀線,商業用材料, | zh_TW |
| dc.subject.keyword | Organic light-emitting diode (OLED),solution-process,white OLED,graphene,silver nanowire (Ag nanowire),commercial materials, | en |
| dc.relation.page | 115 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-07-31 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| Appears in Collections: | 光電工程學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-104-1.pdf Restricted Access | 10.32 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
