請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53793
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 俞松良 | |
dc.contributor.author | Chen-Wei Hsu | en |
dc.contributor.author | 徐臣緯 | zh_TW |
dc.date.accessioned | 2021-06-16T02:29:51Z | - |
dc.date.available | 2020-09-25 | |
dc.date.copyright | 2015-09-25 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-07-31 | |
dc.identifier.citation | 1. Salonen, R., Screening for foetal chromosomal abnormalities. Screening, 2013. 2. Tabor, A. and Z. Alfirevic, Update on procedure-related risks for prenatal diagnosis techniques. Fetal diagnosis and therapy, 2009. 27(1): p. 1-7. 3. Miura, K., et al., Clinical application of fetal sex determination using cell-free fetal DNA in pregnant carriers of X-linked genetic disorders. Journal of human genetics, 2011. 56(4): p. 296-299. 4. Tabor, A., C. Vestergaard, and Ø. Lidegaard, Fetal loss rate after chorionic villus sampling and amniocentesis: an 11‐year national registry study. Ultrasound in Obstetrics Gynecology, 2009. 34(1): p. 19-24. 5. Miller, O.J. and E. Therman, Human chromosomes. 2011: Springer Science Business Media. 6. Odibo, A.O., et al., Revisiting the fetal loss rate after second-trimester genetic amniocentesis: a single center’s 16-year experience. Obstetrics Gynecology, 2008. 111(3): p. 589-595. 7. Reddy, U.M., et al., Karyotype versus microarray testing for genetic abnormalities after stillbirth. New England Journal of Medicine, 2012. 367(23): p. 2185-2193. 8. Dugoff, L., Application of genomic technology in prenatal diagnosis. The New England journal of medicine, 2012. 367(23): p. 2249. 9. Wapner, R.J., et al., Chromosomal microarray versus karyotyping for prenatal diagnosis. New England Journal of Medicine, 2012. 367(23): p. 2175-2184. 10. Lo, Y.D., et al., Presence of fetal DNA in maternal plasma and serum. The Lancet, 1997. 350(9076): p. 485-487. 11. Lo, Y.D., Fetal DNA in maternal plasma: biology and diagnostic applications. Clinical chemistry, 2000. 46(12): p. 1903-1906. 12. Wright, C.F. and H. Burton, The use of cell-free fetal nucleic acids in maternal blood for non-invasive prenatal diagnosis. Human reproduction update, 2009. 15(1): p. 139-151. 13. Go, A.T., J.M. van Vugt, and C.B. Oudejans, Non-invasive aneuploidy detection using free fetal DNA and RNA in maternal plasma: recent progress and future possibilities. Human reproduction update, 2010: p. dmq054. 14. Zhu, Y., et al., Single-nucleotide polymorphisms in soybean. Genetics, 2003. 163(3): p. 1123-1134. 15. Tsui, N.B., et al., Synergy of total PLAC4 RNA concentration and measurement of the RNA single-nucleotide polymorphism allelic ratio for the noninvasive prenatal detection of trisomy 21. Clinical chemistry, 2010. 56(1): p. 73-81. 16. Calabrese, G., et al., Detection of chromosomal aneuploidies in fetal cells isolated from maternal blood using single‐chromosome dual‐probe FISH analysis. Clinical genetics, 2012. 82(2): p. 131-139. 17. Samura, O., et al., Comparison of fetal cell recovery from maternal blood using a high density gradient for the initial separation step: 1.090 versus 1.119 g/ml. Prenatal diagnosis, 2000. 20(4): p. 281-286. 18. Prieto, B., et al., Optimization of nucleated red blood cell (NRBC) recovery from maternal blood collected using both layers of a double density gradient. Prenatal diagnosis, 2001. 21(3): p. 187-193. 19. Ponnusamy, S., et al., In vivo model to determine fetal‐cell enrichment efficiency of novel noninvasive prenatal diagnosis methods. Prenatal diagnosis, 2008. 28(6): p. 494-502. 20. Sehnert, A.J., et al., Optimal detection of fetal chromosomal abnormalities by massively parallel DNA sequencing of cell-free fetal DNA from maternal blood. Clinical chemistry, 2011. 57(7): p. 1042-1049. 21. Smith, M. and J. Visootsak, Noninvasive screening tools for Down syndrome: a review. International journal of women's health, 2013. 5: p. 125. 22. Ehrich, M., et al., Noninvasive detection of fetal trisomy 21 by sequencing of DNA in maternal blood: a study in a clinical setting. American journal of obstetrics and gynecology, 2011. 204(3): p. 205. e1-205. e11. 23. Palomaki, G.E., et al., DNA sequencing of maternal plasma reliably identifies trisomy 18 and trisomy 13 as well as Down syndrome: an international collaborative study. Genetics in medicine, 2012. 14(3): p. 296-305. 24. Sparks, A.B., et al., Selective analysis of cell‐free DNA in maternal blood for evaluation of fetal trisomy. Prenatal diagnosis, 2012. 32(1): p. 3-9. 25. Sparks, A.B., et al., Noninvasive prenatal detection and selective analysis of cell-free DNA obtained from maternal blood: evaluation for trisomy 21 and trisomy 18. American journal of obstetrics and gynecology, 2012. 206(4): p. 319. e1-319. e9. 26. Zimmermann, B., et al., Noninvasive prenatal aneuploidy testing of chromosomes 13, 18, 21, X, and Y, using targeted sequencing of polymorphic loci. Prenatal diagnosis, 2012. 32(13): p. 1233-1241. 27. McFadden, D.E. and J. Friedman, Chromosome abnormalities in human beings. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 1997. 396(1): p. 129-140. 28. Korf, B.R. and M.B. Irons, Human genetics and genomics. 2012: John Wiley Sons. 29. Driscoll, D.A., Second trimester maternal serum screening for fetal open neural tube defects and aneuploidy. Genetics in Medicine, 2004. 6(6): p. 540-541. 30. Slavotinek, A.M., Novel microdeletion syndromes detected by chromosome microarrays. Human genetics, 2008. 124(1): p. 1-17. 31. Shaffer, L.G., et al. The identification of microdeletion syndromes and other chromosome abnormalities: cytogenetic methods of the past, new technologies for the future. in American Journal of Medical Genetics Part C: Seminars in Medical Genetics. 2007. Wiley Online Library. 32. Lozzi, C. and B. Lozzi, Human chronic myelogenous leukemia cell line with positive philadelphia. Blood, 1975. 45(3): p. 321. 33. Klausner, R.D., et al., Binding of apotransferrin to K562 cells: explanation of the transferrin cycle. Proceedings of the National Academy of Sciences, 1983. 80(8): p. 2263-2266. 34. S?rensen, M.D., et al., Epsilon haemoglobin specific antibodies with applications in noninvasive prenatal diagnosis. BioMed Research International, 2009. 2009. 35. Choolani, M., et al., Characterization of first trimester fetal erythroblasts for non‐invasive prenatal diagnosis. Molecular human reproduction, 2003. 9(4): p. 227-235. 36. Lutomski, D., et al., Extemalization and binding of galectin-l on cell surface of K562 cells upon erythroid differentiation. 1997. 37. Donovan-Peluso, M., et al., Expression of human gamma-globin genes in human erythroleukemia (K562) cells. Journal of Biological Chemistry, 1987. 262(35): p. 17051-17057. 38. Fan, H.C., et al., Microfluidic digital PCR enables rapid prenatal diagnosis of fetal aneuploidy. American journal of obstetrics and gynecology, 2009. 200(5): p. 543. e1-543. e7. 39. Bianchi, D.W., et al., Isolation of fetal DNA from nucleated erythrocytes in maternal blood. Proceedings of the National Academy of Sciences, 1990. 87(9): p. 3279-3283. 40. Covone, A.E., et al., Analysis of peripheral maternal blood samples for the presence of placenta‐derived cells using Y‐specific probes and McAb H315. Prenatal diagnosis, 1988. 8(8): p. 591-607. 41. Mohamed, H., J.N. Turner, and M. Caggana, Biochip for separating fetal cells from maternal circulation. Journal of Chromatography A, 2007. 1162(2): p. 187-192. 42. D'Souza, E., K. Ghosh, and R. Colah, A comparison of the choice of monoclonal antibodies for recovery of fetal cells from maternal blood using FACS for noninvasive prenatal diagnosis of hemoglobinopathies. Cytometry Part B: Clinical Cytometry, 2009. 76(3): p. 175-180. 43. Bianchi, D.W., et al., Erythroid‐specific antibodies enhance detection of fetal nucleated erythrocytes in maternal blood. Prenatal diagnosis, 1993. 13(4): p. 293-300. 44. Runte, M., et al., SNURF-SNRPN and UBE3A transcript levels in patients with Angelman syndrome. Hum Genet, 2004. 114(6): p. 553-61. 45. Kuslich, C.D., et al., Prader-Willi syndrome is caused by disruption of the SNRPN gene. Am J Hum Genet, 1999. 64(1): p. 70-6. 46. Malzac, P., et al., Mutation analysis of UBE3A in Angelman syndrome patients. Am J Hum Genet, 1998. 62(6): p. 1353-60. 47. Burger, J., et al., Familial interstitial 570 kbp deletion of the UBE3A gene region causing Angelman syndrome but not Prader-Willi syndrome. Am J Med Genet, 2002. 111(3): p. 233-7. 48. Lowery, M.C., et al., Strong correlation of elastin deletions, detected by FISH, with Williams syndrome: evaluation of 235 patients. American journal of human genetics, 1995. 57(1): p. 49. 49. Slager, R.E., et al., Mutations in RAI1 associated with Smith-Magenis syndrome. Nat Genet, 2003. 33(4): p. 466-8. 50. Vlangos, C.N., et al., Diagnostic FISH probes for del(17)(p11.2p11.2) associated with Smith-Magenis syndrome should contain the RAI1 gene. Am J Med Genet A, 2005. 132A(3): p. 278-82. 51. Yagi, H., et al., Role of TBX1 in human del22q11.2 syndrome. The Lancet, 2003. 362(9393): p. 1366-1373. 52. McDonald-McGinn, D.M. and E.H. Zackai, Genetic counseling for the 22q11.2 deletion. Dev Disabil Res Rev, 2008. 14(1): p. 69-74. 53. Rodriguez, L., et al., The new Wolf-Hirschhorn syndrome critical region (WHSCR-2): a description of a second case. Am J Med Genet A, 2005. 136(2): p. 175-8. 54. Maas, N.M., et al., Genotype-phenotype correlation in 21 patients with Wolf-Hirschhorn syndrome using high resolution array comparative genome hybridisation (CGH). J Med Genet, 2008. 45(2): p. 71-80. 55. Zollino, M., et al., Mapping the Wolf-Hirschhorn syndrome phenotype outside the currently accepted WHS critical region and defining a new critical region, WHSCR-2. Am J Hum Genet, 2003. 72(3): p. 590-7. 56. Zhang, A., et al., Deletion of the telomerase reverse transcriptase gene and haploinsufficiency of telomere maintenance in Cri du chat syndrome. The American Journal of Human Genetics, 2003. 72(4): p. 940-948. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53793 | - |
dc.description.abstract | 近期非侵襲性產前檢查(NIPT)運用孕婦周邊血液游離胎兒DNA (cffDNA)來進行非整倍體遺傳疾病的檢測越來越為準確,甚至能達到目前侵襲性檢查如羊膜穿刺手術或絨毛膜採檢的準確度,雖然目前NIPT已經被臨床所使用且認可,但使用cffDNA的方式依然存在許多限制,最大限制在早期孕期的周邊血液cffDNA含量太少且過於破碎,造成能準確篩檢的疾病項目多半需要有很大的差異性才能被檢測出來,所以像是胎兒的微小染色體缺失等等皆很難做很準確的篩檢。 運用孕婦周邊血液中的胎兒有核紅血球(fnRBC)完整的DNA非常有潛力可以突破這瓶頸,甚至更能準確檢測胎兒的狀況,fnRBC已經被證實是可以成為另外一個可以做NIPT的來源,而目前分離fnRBC的方法很多,科學家不管從物理或是生物的角度分離fnRBC目前結果都不盡理想,如果分離出來的fnRBC多,那純度結果都不高,反之亦然,所以到現在使用細胞做非侵襲性產前檢查的方式一直尚未成熟。 我們希望透過兩個分離系統的搭配,達到分離出高數量且高純度的fnRBC。第一步是透過Isoflux 純化系統去從血液中分離fnRBC,第二步是把分離後的樣本用DEParray做細胞純化。但fnRBC數量甚少,所以建立適合的分析方也非常重要。digital PCR(dPCR) 是目前檢測微量樣本精準度很高的平台,而我們希望可以利用dPCR來檢測微量的fnRBC。 本實驗使用K562細胞作為建立分離平台的體外測試對象,K562 cell line與fnRBC有著相似的特性,所以被廣為使用在建立fnRBC-base NIPT平台的體外測試,在此我們成功了使用K562細胞建立了兩步的純化細胞系統,且建立了目前較常見但NIPT較難檢測的七個微小染色體缺失疾病的8-plex digital PCR 平台。 | zh_TW |
dc.description.abstract | Recently, analysis of cell-free fetal DNA (cffDNA) in maternal blood for non-invasive prenatal testing (NIPT) has been shown to be highly accurate in the detection of common fetal autosomal trisomies. Several studies indicated the accuracy of NIPT in trisomy detection was comparable to the invasive procedures such as chorionic villus sampling or amniocentesis. Incorporating the new non-invasive technologies into clinical practice will impact the current prenatal screening paradigm for fetal aneuploidy. Although the accuracy of NIPT was well-developed and reached clinical diagnostic levels, certain limitations were arose by using cffDNA especially in subchromosome abnormalities detection due to low yield in early gestation. Hence, fetal nucleated red blood cells (fnRBCs) in maternal peripheral blood might eliminate this bottleneck in NIPT development. fnRBCs have been demonstrated as being proof of concept for NIPT in early gestation. Various isolation and enrichment methods based on the physical and biologic features of the fnRBCs have been developed while the purity and amount of isolated fnRBCs from maternal peripheral blood are unfavorable for NIPT applications yet. We would like to establish a two-step purification method for fnRBCs-based NIPT through isolating high-purity fnRBCs from maternal peripheral blood by IsoFlux and DEParray followed by ultra-sensitive digital PCR (dPCR). In this study, we successfully used the K562 cell model system to establish our two-step purification method and have established 8-multiplex dPCR assay for the seven common subchromosome abnormalities in fetus | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T02:29:51Z (GMT). No. of bitstreams: 1 ntu-104-R02424019-1.pdf: 3216768 bytes, checksum: 3a76669877bae25508bb25f0814c9400 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 致謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vii LIST OF TABLES viii Chapter 1 INTRODUCTION 1 1.1 Introduction 1 1.2 Invasive Prenatal Diagnosis 1 1.3 Non-invasive Prenatal Testing 3 1.4 Current NIPT Clinical Testing 4 1.5 Congenital disease and the limitation of detection 6 1.6 Our specific aim 7 Chapter 2 MATERIAL AND METHOD 8 2.1 Material 8 Agent 8 Antibody 9 Primer Probe 9 2.2 Method 9 K562 cell model system 9 K562 ε-hemoglobin CD71 expression identification 10 Sample enrichment by Isoflux 10 Isolate the target cell by DEParray 11 Select seven common chromosomal microdeletions related to fetal Common Subchromosome Abnormalitie 12 Subchromosome Abnormalities critical gene DNA construct 13 Raindance digital PCR 13 Taqman® 8-plex RainRrop Digital PCR copy number variation assay 14 1 Probes and primers design 14 2 Emulsification and thermal cycling of the emulsion 14 3 Fluorescence and droplet data acqusition. 15 4 Establish 8-plex copy number variation assay 16 8-plex dPCR assay functional and limitation test 16 Chapter 3 RESULTS 18 3.1 Using K562 cell line to demonstrate the new approach for isolation of circulating fetal nucleated red blood cell 18 3.1.1 K562 and WBC ε-hemoglobin CD 71 expression identification 18 3.1.2 The k562 recovery rate after Isoflux 18 3.1.3The K562 cells spike into whole blood and the cells are isolated by Isoflux -DEParray system 19 3.2 Establishing 8-plex dPCR copy number variation assay for seven common subchromosome abnormalities in fetus by ultra-low yields DNA sample analysis 20 3.2.1 Assessment of real-time TaqMan probe performance 20 3.2.2Orientation of each probes in the raindrop digital PCR 20 3.2.3Optimization of 8plex dPCR 21 3.2.4 The 8-plex digital PCR copy number variation assay for seven common fetal subchromosome abnormalities is successfully established 21 3.2.5 The 8-plex digital polymerase chain reaction copy number variation assay successfully detected our control plasmid mix for mimic target disease CNV in 500 copy numbers of DNA templates 22 3.2.6 The 8-plex digital PCR copy number variation assay data is consistent with real-time PCR data 22 Chapter 4 DISCUSSION 23 4.1 Using the Isoflux system to enrich the target cell from whole blood 23 4.2 Utilizing the DEParray system to get the high purity cells 23 4.3 The 8-multiplex digital PCR copy number variation assay for seven common fetal subchromosome abnormalities 24 4.4 The limitation of our NIPT system 25 Chapter 5 FIGURES AND TABLES 26 Chapter 6 REFERENCES 46 | |
dc.language.iso | en | |
dc.title | 建立從周邊血液分離胎兒有核紅血球與偵測胎兒染色體微小結構缺失的新方法 | zh_TW |
dc.title | Establishing a New Approach for Isolation of Circulating Fetal Nucleated Red Blood Cell and Detection of Fetal Subchromosome Abnormalities | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蘇怡寧,陳信孚,陳沛隆,蘇剛毅 | |
dc.subject.keyword | 非侵襲性產前檢查,胎兒有核紅血球,微小染色體缺失,Isoflux,DEParray,multiplex digital PCR, | zh_TW |
dc.subject.keyword | non-invasive prenatal testing,fetal nucleated red blood cells,mircrodeletion,Isoflux,DEParray,multiplex digital PCR, | en |
dc.relation.page | 50 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-07-31 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
顯示於系所單位: | 醫學檢驗暨生物技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 3.14 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。