請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53791完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊德良(Der-Liang Young) | |
| dc.contributor.author | Chung-Yi Lin | en |
| dc.contributor.author | 林宗毅 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:29:49Z | - |
| dc.date.available | 2020-08-03 | |
| dc.date.copyright | 2015-08-03 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-31 | |
| dc.identifier.citation | Research Background
[1] Bahadir AR. A fully implicit finite-difference scheme for two-dimensional Burgers equations. Appl Math Comput 2003;137:131-137. [2] Kutluay S, Bahadir AR, Özdeş A. Numerical solution of one-dimensional Burgers equation: explicit and exact-explicit finite difference methods. J Comput Appl Math 1999;103:251-261 [3] Kadalbajoo MK, Awasthi A. A numerical method based on Crank-Nicolson scheme for Burgers equation. Appl Math Comput 2006;182:1430-1442. [4] Ghia U, Ghia KN, Shin CT. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J Comput Phys 1982; 48:387-411. [5] Öziş T, Aksan EN, Özdeş A. A finite element approach for solution of Burgers equation. Appl Math Comput 2003;139:417-428. [6] Varogˇlu E, Finn WD. Space-time finite element incorporating characteristics for the Burgers equation. Int J Numer Methods Eng 1980;16:171-184. [7] Gowinski R. Finite element methods for Navier-Stokes equations. Annu Rev Fluid Mech 1992; 24:167-204. [8] Marshall J, Adcroftm A, Hill C, Perelman L, Heisey C. A finite volume, incompressible Navier-Stoke model for studied of the ocean on parallel computers. J Geophys Res 1997; 102(C3):5753-5766. [9] Chino E, Tosaka N. Dual reciprocity boundary element analysis of time-independent Burgers equation. Eng Anal Bound Elem 1998;21:261-270. [10] Kakuda K, Tosaka N. The generalized boundary element approach to Burgers equation. Int J Numer Methods Eng 1990;29:245-261. [11] Hriberšek M, Škerget L. Iterative methods in solving Navier-Stokes equations by the boundary element method. Int J Numer Meth Eng 1996; 39(1):115-139. [12] Chen JK, Beraun JE. A generalized smoothed particle hydrodynamics method for nonlinear dynamic problems. Comput Method Appl M 2000;190:225-239. [13] Pozorski J, Wawrenczuk A. SPH computation of incompressible viscous flows. J Theoret Appl Mech 2002; 40(4):917-937. [14] Golberg MA, Chen CS. Improved multiquadric approximation for partial differential equations. Eng. Anal Bound Elem 1996;18:9-17. [15] Hon YC, Mao XZ. An efficient numerical scheme for Burgers equation. Appl Math Comput 1998;95:37-50. [16] Cheng AHD, Golberg MA, Kansas EJ, Zammito G. Exponential convergence and H-c multiquadric collocation method for partial differential equations. Numer Methods Partial Differential Equations 2003;19:571-594. [17] Li JC, Hon YC, Chen CS. Numerical comparisons of two meshless methods using radial basis functions. Eng Anal Bound Elem 2002;26:205-225. [18] Chen R, Wu Z. Applying multiquadric quasi-interpolation to solve Burgers equation. Appl Math Comput 2006;172:472-484. [19] Nam MD, Thanh TC. Numerical solution of Navier–Stokes equations using multiquadric radial basis function networks. Int J Numer Meth Fl 2011; 37(1):65-86. [20] Young DL, Fan CM, Hu SP, Atluri SN. The Eulerian-Lagrangian method of fundamental solutions for two-dimensional unsteady Burgers equations. Eng Anal Bound Elem 2008;32:395-412. [21] Young DL, Hu SP, Fan CM, Chen CW. Method of fundamental solutions and Cole-Hopf transformation for Burgers equations. Comput Fluid Dyn J 2006;14:454-467. [22] Lin CY, Gu MH, Young DL. The time-marching method of fundamental solutions for multi-dimensional telegraph equations. CMC-Comput Mater Con 2010;18:43-68. [23] Young DL, Lin YC, Fan CM, Chiu CL. The method of fundamental solutions for solving incompressible Navier–Stokes problems. Eng Anal Bound Elem 2009; 33(8-9):1031-1044. [24] Chen CS, Karageorghis A, Smyrlis YS. The method of fundamental solution – A meshless method. Dynamic publisher: 2008. [ISBN 1890888-04-4] [25] Fox L, Henrici P, Moler CB. Approximations and bounds for eigenvalues of elliptic operators. SIAM J Numer Anal 1967; 4:89-102. [26] Tsai CC, Chen CS, Hsu TW. The method of particular solutions for solving axisymmetric polyharmonic and poly-Helmholtz equations. Eng Anal Bound Elem 2009;33:1396-1402. [27] Wen PH, Chen CS. The method of particular solutions for solving scalar wave equations. Int J Numer Method Biomed Eng 2010;26:1878-1889. [28] Chen CS, Fan CS, Wen PH. The method of approximate particular solutions for solving elliptic problems with variable coefficients. International Journal of Computational Methods 2011; 8(3):545-559. [29] Chen CS, Fan CM, Wen PH. The method of approximate particular solutions for solving certain partial differential equations. Numer Meth Part D E 2012; 28(2):506-522. [30] Fu ZJ, Chen W, Qin QH. Boundary knot method for heat conduction in nonlinear functionally graded material. Eng Anal Bound Elem 2011; 35(5):729-734. [31] Fu ZJ, Chen W, Yang HT. Boundary particle method for Laplace transformed time fractional diffusion equations. J Comput Phys 2013; 235:52-66. [32] Fu ZJ, Chen W, Gu Y. Burton-Miller type singular boundary method for acoustic radiation and scattering. J Sound Vib 2014; 333(16):3776-3793 [33] Hannani SK, Sadeghi MM. Navier-Stokes calculations using a finite point meshless method. Sci Iran 2005; 12(2):151-166. [34] Lee CK, Liu X, Fan SC. Local multiquadric approximation for solving boundary value problems. Comput Mech 2003; 30(5-6):396-409. [35] Yao G, Chen CS, Kolibal J. A localized approach for the method of approximate particular solutions. Comput Math Appl 2011;61:2376-2387. [36] Lin CY, Gu MH, Young DL, Chen CS. Localized method of approximate particular solutions with Cole–Hopf transformation for multi-dimensional Burgers equations. Eng Anal Bound Elem 2014; 40:78–92. [37] Karageorghis A, Chen CS, Smyrlis YS. Matrix decomposition RBF algorithm for solving 3D elliptic problems. Eng Anal Bound Elem 2009; 33:1368-1373. [38] Shu C, Ding H, Yeo KS. Computation of incompressible Navier-Stokes equations by local RBF-based differential quadrature method. CMES-Comp Model Eng 2005;7:195-205. [39] Zhou CH, Shu C. A local domain-free discretization method for simulation of incompressible flows over moving bodies. Int J Numer Meth Fl 2011;66:162-182. [40] Shu C, Ding H, Yeo KS. Local radial basis function-based differential quadrature method and its application to solve two dimensional incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 2003;192:941-954. [41] Chen CS, Brebbia CA, Power H, Dual reciprocity method using compactly supported radial basis functions. Commun Numer Methods Eng 1999; 15(2) 137-150. [42] Chou CK, Sun CP, Young DL, Sladek J, Sladek V. Extrapolated local radial basis function collocation method for shallow water problems. Engineering Analysis with Boundary Elements 2015; 50: 275-290. [43] Atluri SN, Zhu T. A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput Mech 1998;22:117-127. [44] Lin H, Atluri SN. The meshless local Petrov-Galerkin (MLPG) method for solving incompressible Navier–Stokes equations. CMES-Comp Model Eng 2001;2:117-142. [45] Yao G, Šarler B, Chen CS. A comparison of three explicit local meshless methods using radial basis functions. Eng Anal Bound Elem 2011; 35:600-609 Chapter 1 [1] Fox L, Henrici P, Moler CB. Approximations and bounds for eigenvalues of elliptic operators. SIAM Journal on Numerical Analysis 1967; 4:89-102. [2] Fairweather G, Karageorghis A. The method of fundamental solution for elliptic boundary value problems. Advances in Computational Mathematics 1998; 9:69–95. [3] Wen PH, Chen CS. The method of particular solutions for solving scalar wave equations. International Journal for Numerical Methods in Biomedical Engineering 2010; 26:1878-1889. [4] Chen CS, Fan CS, Wen PH. The method of approximate particular solutions for solving elliptic problems with variable coefficients. International Journal of Computational Methods 2011; 8(3):545-559. [5] Chen CS, Fan CS, Wen PH. The method of approximate particular solutions for solving certain partial differential equations. Numerical Methods for Partial Differential Equations 2012; 28(2): 506-522. [6] Chen CS, Karageorghis A, Smyrlis YS. The method of fundamental solution – A meshless method. Dynamic publisher: 2008. [ISBN 1890888-04-4] [7] Y ao G, Chen CS, Kolibal J. A localized approach for the method of approximate particular solutions. Computers & Mathematics with Applications 2011; 61:2376-2387. [8] Sarler B, Vertnik R. Meshfree explicit local radial basis function collocation method for diffusion problems. Computers & Mathematics with Applications 2006; 21:1269–82. [9] Shen LH, Young DL, Lo DC, Sun CP. Local differential quadrature method for 2-D flow and forced-convection problems in irregular domains. Numerical Heat Transfer, Part B: Fundamentals 2009; 55(2): 116-134. [10] Tsai CH, Kolibal J, Li M. The golden section search algorithm for finding a good shape parameter for meshless collocation methods. Engineering Analysis with Boundary Elements 2010; 34(8):738-746. [11] Karageorghis A, Chen CS, Smyrlis YS. Matrix decomposition RBF algorithm for solving 3D elliptic problems. Engineering Analysis with Boundary Elements 2009; 33:1368-1373. [12] Yao G, Šarler B, Chen CS. A comparison of three explicit local meshless methods using radial basis functions. Engineering Analysis with Boundary Elements 2011; 35:600-609. [13] Gu MH, Fan CM, Young DL. The Method of fundamental solutions for the multi-dimensional wave equations. Journal of Marine Science and Technology-Taiwan 2011; 19:586-595. Chapter 2 Chapter 3 [1] Burgers JM. A mathematical model illustrating the theory of turbulence. Advances in Applied Mechanics 1948;1:171-199. [2] Zhang XY, Tian HY, Chen W. Local method of approximate particular solutions for two-dimensional unsteady Burgers equations. Computers & Mathematics with Applications 2014; 66(12): 2425-2432. [3] Lin CY, Gu MH, Young DL, Chen CS. Localized method of approximate particular solutions with Cole–Hopf transformation for multi-dimensional Burgers equations. Engineering Analysis with Boundary Elements 2014; 40:78–92. [4] Hopf E. The partial differential equation ut + uux = μxx. Communications on Pure and Applied Mathematics 1950;3:201-230. [5] Cole JD. On a quasilinear parabolic equation occurring in aerodynamics. The Quarterly of Applied Mathematics 1951;9:225-236. [6] Chiu CL, Fan CM, Young DL. Meshless numerical solutions for Burgers equations by multiquadrics method and Cole-Hopf Transformation. Journal of Aeronautics, Astronautics and Aviation, Series A, 2007; .39(1): 001 – 008. [7] Bahadir AR. A fully implicit finite-difference scheme for two-dimensional Burgers equations. Applied Mathematics and Computation 2003;137:131-137. [8] Fu S, Hodges B. Time-Centered Split Method for Implicit Discretization of Unsteady Advection Problems. Journal of Engineering Mechanics 2009;135:256-264. [9] Young DL, Fan CM, Hu SP, Atluri SN. The Eulerian-Lagrangian method of fundamental solutions for two-dimensional unsteady Burgers equations. Engineering Analysis with Boundary Elements 2008;32:395-412. [10] Nash JC. Compact numerical methods for computers: linear algebra and function minimization. Adam Hilger: 1990. [ISBN-13: 978-0852743195] [11] Strang G. Linear algebra and its applications. Brooks Cole: 2005. [ISBN-13: 978-0030105678] [12] Crank J, Nicolson P. A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type. Proceedings of the Cambridge Philosophical Society 1947; 43(1): 50–67. [13] Wertz J, Kansas EJ, Ling L. The role of the multiquadric shape parameters in solving elliptic partial differential equations. Computers & Mathematics with Applications 2006;51:1335-1348. [14] Polyanin AD, Zaitsev VF. Handbook of Nonlinear Partial Differential Equation. Chapman and Hall/CRC: 2004. [ISBN-13: 978-1584883555] Chapter 4 [1] Batchelor GK. An Introduction to Fluid Dynamics. Cambridge University Press: 1967. [ISBN 0-521-66396-2] [2] Chorin AJ. The numerical solution of the Navier-Stokes equations for an incompressible fluid. Bulletin of the American Mathematical Society 1967; 73: 928-931. [3] Chorin AJ. Numerical solution of the Navier-Stokes equations. Mathematics of Computation 1968;22(104):745-762. [4] Bell J, Colella P, Glaz H. A second-order projection method for the incompressible Navier-Stokes equations. Journal of Computational Physics 1989; 85:257–283. [5] Chorin AJ, Marsen JE. A Mathematical Introduction to Fluid Mechanics. Springer-Verlag: 1993. [ISBN 0-387-97918-2.] [6] Patankar S. Numerical Heat Transfer and Fluid Flow. Taylor & Francis: 1980 [ISBN-10: 0891165223 ISBN-13: 978-0891165224 0]. [7] Ferzige JH, Peric M. Computational Methods for Fluid Dynamics. Springer-Verlag: 2011 [ISBN 978-3-540-42074-3]. [8] Young DL, Yang SK, Eldho TI. Solution of the Navier–Stokes equations in velocity–vorticity form using a Eulerian–Lagrangian boundary element method. International Journal for Numerical Methods in Fluids 2000; 34(7):627–650. [9] Lo DC, Young DL, Nurugesan K. An accurate numerical solution algorithm for 3D velocity–vorticity Navier–Stokes equations by the DQ method. Communications in Numerical Methods in Engineering 2006; 22(3):235-250. [10] Tezdutar TE, Liou J, Ganjoo DK, Behr M. Solution technique for the vorticity-streamfunction formulation of two-dimensional unsteady incompressible flows. International Journal for Numerical Methods in Fluids 1990; 11: 515-539. [11] Reynolds O. Papers on mechanical and physical subjects: the sub-mechanics of the universe. Cambridge University Press: 1903. [ISBN-13: 978-1274520272] [12] Denaro FM. On the application of the Helmholtz–Hodge decomposition in projection methods for incompressible flows with general boundary conditions. International Journal for Numerical Methods in Fluids 2003; 43(1): 43-69. [13] Almgren AS, Bell JB, Collela P, Howell LH, Welcome ML. A conservative adaptive projection method for the variable density incompressible Navier–Stokes Equations. Journal of Computational Physics 1998; 142: 1-46. [14] Brown DL, Cortez R, Minion ML. Accurate projection methods for the incompressible Navier–Stokes equations 2000; 168: 464-499. [15] Liu ME, Ren YX, Zhang HX. A class of fully second order accurate projection methods for solving the incompressible Navier–Stokes equations 2004; 200: 325-346. [16] Ghia U, Ghia KN, Shin CT. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics 1982; 48:387-411. [17] Bruneau C, Jouron C. An efficient scheme for solving steady incompressible Navier-Stokes equations. Journal of Computational Physics 1990; 89:389-413. [18] Sahin M, Owens R. A novel fully implicit finite volume method applied to the lid-driven cavity problem. Part I: High Reynolds number flow calculations. International Journal for Numerical Methods in Fluids 2003; 42:57-77. [19] Mramor K, Vertnik R, Sarler B. Low and intermediate re solution of lid driven cavity problem by local radial basis function collocation method. CMC-Computers Materials & Continua 2013; 36:1-21. [20] Erturk E, Corke TC, Gokcol C. Numerical Solutions of 2-D Steady Incompressible Driven Cavity Flow at High Reynolds Numbers. International Journal for Numerical Methods in Fluids 2005; 48: 747-774. [21] Gowinski R. Finite element methods for Navier-Stokes equations. The Annual Review of Fluid Mechanics 1992; 24:167-204. [22] Sanyasiraju YVSS, Chandhini G. Local radial basis function based gridfree scheme for unsteady incompressible viscous flows. Journal of Computational Physics 2008; 227 :8922-8948. [23] Armaly BF, Durst F, Pereira JCF, Schonung B. Experimental and theoretical investigation of backward-facing step flow. Journal of Fluid Mechanics 1983; 127:473-496. [24] Kosma Z. Method of lines for the Navier-Stokes equations in stream function formulation, Task Quarterly 2004;9(1):17-35. [25] Kim J, Moin P. Application of a fractional-step method to incompressible Navier-Stokes equations. Journal of Computational Physics 1985; 59:308-323. [26] Erturk E. Numerical solutions of 2-D steady incompressible flow over a backward-facing step, Part I: High Reynolds number solutions. Computers & Fluids 2008; 37:633–655. [27] Gartling DK. A test problem for outflow boundary conditions—flow over a backward-facing step. International Journal for Numerical Methods in Fluids 1990; 11(7):953-967. [28] Pentaris A, Nikolados K and Tsangaris S. Development of projection and artificial compressibility methodologies using the approximate factorization technique. International Journal for Numerical Methods in Fluids 1994; 19(11):1013-1038. [29] Pappou Th, Tsangaris S. Development of an artificial compressibility methodology using flux vector splitting. International Journal for Numerical Methods in Fluids 1997; 25:523-545. [30] Barton IE. The entrance effect of laminar flow over a backward-facing step geometry. International Journal for Numerical Methods in Fluids 1997; 25:633-644. [31] Barton IE. Improved laminar predictions using a stabilised time-dependent simple scheme. International Journal for Numerical Methods in Fluids 1998; 28:841-857. [32] Keskar J, Lyn D A. Computations of a laminar backward-facing step flow at Re=800 with a spectral domain decomposition method. International Journal for Numerical Methods in Fluids 1999; 29:411-427. [33] Domanski J, Kosma Z. Numerical simulation of viscous flows over backward-facing steps. Journal of Applied Mathematics and Mechanics (ZAMM) 2001; 81(4):921-922 Chapter 5 [1] Tang LQ, Cheng T, Tsang TTH. Transient solution for three-dimensional lid-driven cavity flow by a least-squares finite element method. International Journal for Numerical Methods in Fluids 1995; 21:413-432. [2] Sheu TWH, Tsai SF. Flow topology in a steady three-dimensional lid-driven cavity. Computers & Fluids 2002; 31(8): 911-934. [3] Shu C, Niu XD, Chew YT. Numerical computation of three dimensional incompressible Navier-Stokes equations in primitive variable form by DQ method. International Journal for Numerical Methods in Fluids 2003; 43:345-368. [4] Albensoeder S, Kulhmann HC. Accurate three-dimensional lid-driven cavity flow. Journal of Computational Physics 2005; 206(2): 536-558. [5] Armaly BF, Durst F, Pereira JCF, Schonung B. Experimental and theoretical investigation of backward-facing step flow. Journal of Fluid Mechanics 1983; 127:473-496 [6] Williams PT, Baker AJ. Numerical solutions of laminar flow over a 3D backward-facing step. International Journal for Numerical Methods in Fluids 1997; 24:1159-1183. [7] Chiang TP, Sheu WH. A numerical revisit of backward-facing step flow problem. Physics of Fluids 1999; 11(4): 862-874. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53791 | - |
| dc.description.abstract | 區域近似特解法是近年正在發展中的無網格數值方法。本論文第一章先介紹了區域近似特解法,從特解法到近似特解法的發展歷程。接著引入區域化技巧、徑向基底方程式用正規化技巧、利用改良十字形選點法選擇區計算域,使區域近似特解法比近似特解法能更有效率的求解大尺度電腦運算或即時模擬問題。本研究也詳細提供了適用於多維度多種運算子與等式、方程式之區域近似特解法通用推導過程。目的是要使用區域近似特解法求解多維度不可壓縮納維爾-史托克斯方程組。
為了用丘林的投影法求解不可壓縮納維爾-史托克斯方程組,本論文先在第二章與第三章對波以松方程式和伯格斯方程組做了一系列的測試。第二章用波以松方程式展示了區域近似特解法是否使用了足夠的總點數、合理之區域計算域、有效的正規化技巧之差別。第三章提供了一個利用柯爾-霍夫轉換式作數值近似求解柏格斯方程組之技巧,但此方法在求解微分邊界所遇到的困難仍待未來研究進一步解決。本研究推導了多維度通用的柯爾-霍夫轉換式,包含了對必要條件之數值應用推導式。柯爾-霍夫轉換式將控制方程式轉換為單一變數擴散方程式,其初始條件需要以奇異值分解法求之,而多維度問題則需要最小平方法求之。第三章提供了四個實驗以展示本研究提出之數值模式對於使用不同總點數、不同區域點數、不同時間步間隔、不規則計算域與非結構性佈點之應用能力。 介紹完波以森分成式與柏格斯方程組後,第四章與第五章集中在本研究之主要題目:求解多維度納維爾-史托克斯方程組。本研究利用區域近似特解法對丘林的投影法做數值處理來求解納維爾-史托克斯方程組,兩個章節求解了板驅動空穴流與後向階梯流問題。第四章之二維數值試驗提供了和文獻或不同方法比較之詳盡數據,而第五章則試圖以比第四章更有效率方法求解三維數值試驗。 本研究亦提出在不同計算遇幾何形狀、不同時間解離方法、不同佈點法、不同控制方程式與不同流場特性下的形狀參數之最適範圍。所有實驗的形狀參數之最適範圍皆維持在特定範圍內,5∼85有可能提供精準解,而20∼30則在不同問題皆能夠穩定地求出精準解。 最後,本研究驗證了區域近似特解法求解多維度不可壓縮納維爾-史托克斯方程組織能力,並提出在未來研究可行之改進本數值模式之方法。 | zh_TW |
| dc.description.abstract | The localized method of approximate particular solutions (LMAPS) is a developing meshless numerical method. The LMAPS as introduced in Chapter 1, is developed from the method of particular solutions (MPS) and the method of approximate particular solutions (MAPS). Localization technique, along with normalization technique for radial basis functions and modified cross-shaped selection for local influence area allows the LMAPS to be more efficient than the MAPS for large scale computations or real time simulations. This research also provides generalized derivation applicable for various operators or equations in detail. The goal of this research is to use the LMAPS to solve multi-dimensional incompressible Navier-Stokes equations.
In order to apply Chorin’s approach for solving incompressible Navier-Stokes equations, Poisson equation and Burgers equations have been tested prior to incompressible Navier-Stokes equations, respectively in Chapter 2 and Chapter 3. Chapter 2 uses Poisson equation to demonstrate the difference of applying the LMAPS with or without certain amount of global points, reasonable local influence area, or sufficient normalization technique. While in Chapter 3, an alternative numerical approach for obtaining solutions of Burgers equations was provided, via Cole-Hopf transformation, although it still has difficulties in dealing problems with Neumann boundary conditions. A generalized derivation of Cole-Hopf transformation is also demonstrated, including the derivation for numerical implementations of the essential conditions. Applying Cole-Hopf transformation transforms the governing equations into diffusion equation, it requires singular value decomposition (SVD) to solve the initial conditions, and least squares method (LSM) for solving multi-dimensional problems. Four experiments have been carried out to demonstrate capabilities of the proposed scheme with different number of global points, different number of local points, different time interval, irregular domain, and unstructured point distribution. After introducing Poisson equation and Burgers equations, Chapter 4 and 5 focus on the main task of solving multi-dimensional incompressible Navier-Stokes equations. The numerical solutions of incompressible Navier-Stokes equations is solved by the LMAPS with implementation of Chorin’s projection method, both chapter provide experiments on lid-driven cavity flow and backward-facing step flow. The experiments of two-dimensional viscous flow in Chapter 4 involve close investigations in matching the details with the results in literature or by other numerical methods, while Chapter 5 tries to solve three-dimensional problems with more efficiency and less consuming comparing with the experiments of Chapter 4. The optimal range for shape parameter has been determined while applying the proposed scheme to cases with different domain geometry, different temporal discretization, different point distribution, different governing equations, and different flow characteristics. This research proves the proposed scheme is capable of finding the same stable optimal range of shape parameter for all experiments given, can possibly give some accurate solutions, and can get accurate solution stably for different experiments. Finally, this research verifies the capability of the LMAPS to be able to solve multi-dimensional incompressible Navier-Stokes equations, and some possible approach for improving the proposed scheme is mentioned in future works. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:29:49Z (GMT). No. of bitstreams: 1 ntu-104-F98521308-1.pdf: 6687275 bytes, checksum: 9b8121b788b954d04b22527c4a1b504f (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 摘要 I
Abstract III Table of contents VII List of Tables XI List of Figures XIII Nomenclatures XVII Superscripts and subscripts XVII Regular symbols XVII Greek symbols XVIII Research background 1 References 4 Chapter 1: The localized methods of approximate particular solutions 11 1.1 The method of approximate particular solutions 11 1.2 Localization technique 13 1.3 Local influence area 16 1.4 Radial basis functions 17 1.5 Normalization techniques 19 References 20 Chapter 2: The localized methods of approximate particular solutions for Poisson equation 29 2.1 Poisson equation 29 2.2 Discretization of Poisson equation 30 2.3 Numerical experiment 31 Chapter 3: The localized methods of approximate particular solutions for Burgers equations 43 3.1 Introductions 43 3.2 Burgers equations 46 3.3 Discretization of Burgers equations 47 3.4 Alternative approach for solving Burgers equations: Cole-Hopf transformation 49 3.5 Numerical procedure for the LMAPS discretized Burgers equations with Cole-Hopf transformation 51 3.6 Numerical experiments 55 Experiment 3-1: One-dimensional problem with propagating wave 55 Experiment 3-2: One-dimensional problem with diffusive N-wave 57 Experiment 3-3: Two-dimensional problem in L-shaped irregular domain 58 Experiment 3-4: Three-dimensional problem in irregular domain 60 References 62 Chapter 4: The localized methods of approximate particular solutions for two-dimensional incompressible Navier-Stokes equations 81 4.1 Introductions 81 4.2 Incompressible Navier-Stokes equations 83 4.3 Chorin’s projection method 84 4.4 Numerical procedures 88 4.5 Numerical experiments 90 Experiment 4-1: The lid-driven cavity flow problem 91 Experiment 4-2: The backward facing step flow problem 95 References 98 Chapter 5: The localized methods of approximate particular solutions for three-dimensional incompressible Navier-Stokes equations 126 5.1 Introductions 126 5.2 Numerical Experiments 127 Experiment 5-1: The lid-driven cavity flow problem 127 Experiment 5-2: The backward-facing step problem 129 References 132 Conclusions and future works 152 Appendix 1: Derivations of Cole-Hopf transformation for multi-dimensional Burgers equations 155 | |
| dc.language.iso | en | |
| dc.subject | 徑向基底函數 | zh_TW |
| dc.subject | 改良十字形選點法 | zh_TW |
| dc.subject | 形狀參數 | zh_TW |
| dc.subject | 柏格斯方程組 | zh_TW |
| dc.subject | 區域近似特解法 | zh_TW |
| dc.subject | 柯爾-霍夫轉換式 | zh_TW |
| dc.subject | 投影法 | zh_TW |
| dc.subject | 不可壓縮納維爾-史托克斯方程組 | zh_TW |
| dc.subject | incompressible Navier-Stokes equations | en |
| dc.subject | The localized method of approximate particular solutions | en |
| dc.subject | modified cross-shaped selection | en |
| dc.subject | radial basis function | en |
| dc.subject | shape parameter | en |
| dc.subject | Burgers equations | en |
| dc.subject | Cole-Hopf transformation | en |
| dc.subject | projection method | en |
| dc.title | 區域近似特解法求解不可壓縮納維爾-史托克斯方程組 | zh_TW |
| dc.title | Localized method of approximate particular solution for solving incompressible Navier-Stokes equations | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 蔡丁貴(Ting-Kuei Tsai),張榮語(Rong-Yeu Chang),劉進賢(Chein-Shan Liu),許泰文(Tai-wen Hsu),廖清標(Liao, Ching-biao) | |
| dc.subject.keyword | 區域近似特解法,改良十字形選點法,徑向基底函數,形狀參數,柏格斯方程組,柯爾-霍夫轉換式,投影法,不可壓縮納維爾-史托克斯方程組, | zh_TW |
| dc.subject.keyword | The localized method of approximate particular solutions,modified cross-shaped selection,radial basis function,shape parameter,Burgers equations,Cole-Hopf transformation,projection method,incompressible Navier-Stokes equations, | en |
| dc.relation.page | 156 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-07-31 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 6.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
