請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53783
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張進福(Jin-Fu Chang) | |
dc.contributor.author | Shin-Rung Chen | en |
dc.contributor.author | 陳信榕 | zh_TW |
dc.date.accessioned | 2021-06-16T02:29:37Z | - |
dc.date.available | 2017-08-03 | |
dc.date.copyright | 2015-08-03 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-07-31 | |
dc.identifier.citation | [1] N. Taniguchi, “On the basic concept of nanotechnology,” Proceeding of the International Conference on Production Engineering, 1974.
[2] S. Hiyama, Y. Moritani, T. Suda, R. Egashira, A. Enomoto, M. Moore, T. Nakano, “Molecular Communication,” Proceeding of the NSTI Nanotechnology Conference, October 2005. [3] C. Chen, Y. Haik, J. Chatterjee, “Development of nanotechnology for biomedical applications,” Proceeding of Emerging Information Technology Conference, August, 2005. [4] J. Han, J. Fu, R.B. Schoch, “Molecular sieving using nanofilters : Past, Present and Future,” Lab Chip, pp. 23-33, Jan, 2008 [5] D. Tessier, I. Radu, M. Filteau, “Antimicrobial fabrics coated with nano-sized silver salt crystals,” NSTI Nanotech, pp.762-764, May, 2005. [6] University of Warwick, “Text message using vodka: Molecular communication can aid communication underground, underwater or inside the body,” 2013. [7] Po-Jen Shih, Chia-Han Lee, Ping-Cheng Yeh, Kwang-Cheng Chen, “Channel Codes for Reliability Enhancement in Molecular Communication,” IEEE Journal on Selected Areas in Communications, vol. 31, pp. 857-867, 2013. [8] Po-Jen Shih, Chia-Han Lee, Ping-Cheng Yeh, “Channel codes for mitigating intersymbol interference in diffusion-based molecular communications,” IEEE Global Communications Conference, pp 4228-4232, 2012. [9] Mark S. Leeson, Matthew D. Higgins, “Forward error correction for molecular communications,” Nano Communication Networks, vol 3, pp.161-167, 2012. [10] M. S. Kuran, H. B. Yilmaz, T. Tugcu, I. F. Akyildiz, “Modulation Techniques for Communication via Diffusion in Nanonetworks,” IEEE ICC, pp.1-5, 2011. [11] H. Arjmandi, A. Gohari, M. N. Kenari, F. Bateni, “Diffusion-Based Nanonetworking: A New Modulation Technique and Performance Analysis,” IEEE Communications Letters, vol. 17, pp.645-648, 2013. [12] H. Birkan Yilmaz, Na-Rae Kim, Chan-Byoung Chae, “Effect of ISI Mitigation on Modulation Techniques in Communication via Diffusion,” arXiv:1401.3410, 2014. [13] D. Kilinc, O. B. Akan, “Receiver Design for Molecular Communication,” IEEE Journal on Selected Areas in Communications, vol. 31, pp. 705-714, 2014. [14] Hoda ShahMohammadian, Geoffrey G. Messier , Sebastian Magierowski, “Optimum receiver for molecule shift keying modulation in diffusion-based molecular communication channels,” Nano Communication Networks, vol. 3, pp. 183-195, 2012. [15] Chieh Lo, Yao-Jen Liang, Kwang-Cheng Chen, “A Phase Locked Loop for Molecular Communications and Computations,” IEEE Journal on Selected Areas in Communications, vol. 32, pp. 2381-2391, 2014. [16] Xiayang Wang, M. D. Higgins, M. S. Leeson, “Distance Estimation Schemes for Diffusion Based Molecular Communication Systems,” IEEE Communications Letters, vol. 19, pp. 399-402, 2015. [17] Jiun-Ting Huang, Hsin-Yu Lai, Yen-Chi Lee, Chia-Han Lee, Ping-Cheng Yeh, “Distance estimation in concentration-based molecular communications,” IEEE Global Communications Conference, pp. 2587-2591, 2013. [18] A. Einolghozati, M. Sardari, F. Fekri, “Relaying in diffusion-based molecular communication,” IEEE International Symposium on Information Theory Proceedings, pp. 1844-1848, 2013. [19] M. H. Bazargani, D. Arifler, “Deterministic Model for Pulse Amplification in Diffusion-Based Molecular Communication,” IEEE Communications Letters, vol. 18, pp. 1891-1894, 2014. [20] Po-Jen Shih, Yen-Chi Lee, Ping-Cheng Yeh, Kwang-Cheng Chen, “An asynchronous communication scheme for molecular communication, ” IEEE International Conference on Communications (ICC), pp. 6177-6182, June 2012. [21] G.G. Messier, S. Magierowski, “Blind Synchronization in Diffusion-Based Molecular Communication Channels, ” IEEE Communications Letters, vol. 17, pp. 2156-2159, Nov, 2013. [22] A.W. Eckford, Chan-Byoung Chae, “Symbol Interval Optimization for Molecular Communication With Drift, ” IEEE Transactions on NanoBioscience, vol. 13, pp. 223-229, Aug, 2014. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53783 | - |
dc.description.abstract | 分子通訊(Molecular communication)是一種奈米裝置(Nanomechines)中新興的通訊方式,奈米裝置之間利用分子(Molecules)作為訊息的載波進行通訊。有別於一般傳統通訊,分子通訊主要探討的情況在於生物體內,裝置之間的距離約為非常短,分子傳送過程會以布朗尼運動(Brownian motion)飄移(Diffusion-based)的方式到達接收端,接收端點依單位符號區間內所到達的分子數量來決策所傳送的訊息。
在基於擴散過程的分子通訊,前一個訊息所遺留下來的分子數量會干擾到目前所要傳送的訊息分子數,稱之為分子通訊裡的符號間干擾(Intersymbol interference, ISI),本篇論文對此提出了多傳送端點與多接收端點(Multi-input Multi-output, MIMO)所使用的調變方法,降低符號間干擾的影響,利用不同的分子種類與分子濃度進行調變。分別討論多個傳送端對一個接收端的方法,使用時間與空間調變(Space-Time modulation)、設計多個接收端的接收權重配置以提升訊號與干擾比(Signal to Interference ratio, SIR),以求出更好的錯誤率表現,並且探討分子通訊與傳統通訊上的差異。 | zh_TW |
dc.description.abstract | In molecular communications nanomachines are the transceivers and molecules are message carrier for communication between nanomachines. Different from conventional communications, the scenario of molecular communication is mostly discussed and applied in human body with short communication range over which molecules drift. The channel is generally modeled as a diffusion one based on Brownian motion. The receiver detects molecules within a symbol duration for determining carried messages.
In diffusion-based molecular communications, intersymbol interference arises from the fact that molecules emitted in the previous symbol duration may arrive at the receiver in current symbol time, causing interference to current symbol detection. To cope with the issue and improve system performance, we propose space-time modulation techniques and a weighted combining approach for MIMO transmissions and reception, respectively. We further discuss the impact of transmission range, symbol duration, and diffusion coefficient on system performance. Finally we address difference between molecular communication and conventional communication. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T02:29:37Z (GMT). No. of bitstreams: 1 ntu-104-R02942111-1.pdf: 1453558 bytes, checksum: 338cfba231fb2cce35d8ca5814ee0a5c (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 誌謝..................................................... I
中文摘要 ............................................... II ABSTRACT .............................................. III CONTENTS ............................................... IV LIST OF FIGURES ........................................ VI LIST OF TABLES ....................................... VIII CHAPTER 1 引言與動機 .................................... 1 1.1 起源 ................................................ 1 1.2 研究背景與現況 ...................................... 7 1.3 現有調變方法探討 ................................... 12 1.4 論文動機 ........................................... 13 1.5 論文架構 ........................................... 14 CHAPTER 2 分子時間調變 ................................. 15 2.1 系統模型 ........................................... 16 2.1.1 通道模型(CHANNEL MODEL) .......................... 16 2.1.2 分子數量接收數學表示式 ........................... 17 2.2 接收機率(PHIT)模擬過程 ............................. 19 2.3 分子時間調變(MOLECULAR TIME SHIFT KEYING, MTSK) .... 22 2.3.1 雙開關調變(DOOK).................................. 22 2.3.2 分子時間調變(MTSK) ............................... 23 2.4 模擬結果 ........................................... 24 2.5 章節結論 ........................................... 26 CHAPTER 3 接收端點權重分配 ............................. 27 3.1 系統模型 ........................................... 28 3.1.1 分子數量接收數學表示式 ........................... 28 3.2 接收機率(PHIT)模擬過程 ............................. 29 3.3 基於擴散分子通訊之粒子性討論 ....................... 32 3.4 接收端點權重分配 ................................... 35 3.5 模擬結果 ........................................... 37 3.6 章節結論 ........................................... 41 CHAPTER 4 奈米裝置參數調整與結果分析 ................... 42 4.1 系統模型 ........................................... 42 4.2 奈米裝置間距離、符號區間、飄移常數分析 ............. 42 4.3 模擬結果 ........................................... 47 4.4 章節結論 ........................................... 51 CHAPTER 5 總結及未來展望 ............................... 52 CHAPTER 6 參考文獻 ..................................... 55 | |
dc.language.iso | zh-TW | |
dc.title | 基於擴散分子通訊之多輸入多輸出技術研究 | zh_TW |
dc.title | Study on MIMO Techniques in Diffusion-Based Molecular Communications | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蔡榮宗(Rung-Tzung Tsai),黃家麒(Chia-Chi Huang),梁耀仁 | |
dc.subject.keyword | 奈米網路,分子通訊,多輸入多輸出,符號間干擾,擴散,布朗尼運動, | zh_TW |
dc.subject.keyword | Nanonetwork,Molecular communication,MIMO,Intersymbol Interference,Diffusion,,Brownian motion, | en |
dc.relation.page | 57 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-07-31 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 1.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。