請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53775
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林唯芳(Wei-Fang Su) | |
dc.contributor.author | Cheng-Ya Chu | en |
dc.contributor.author | 朱澄亞 | zh_TW |
dc.date.accessioned | 2021-06-16T02:29:26Z | - |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-07-31 | |
dc.identifier.citation | [1] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, Science 342 (2013) 341.
[2] G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith, Energy Environ. Sci. 7 (2014) 982. [3] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc. 131 (2009) 6560. [4] J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, and N. G. Park, Nanoscale 3 (2011) 4088. [5] H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. H.-Baker, J. H. Yum, J. E. Moser, M. Gratzel, and N. G. Park, Sci Rep 2 (2012), 591. [6] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, Science 338 (2012) 643. [7] J. M. Ball, M. M. Lee, A. Hey and H. J. Snaith, Energy Environ. Sci.6 (2013) 1739 [8] H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, Science 345 (2014) 542. [9] J. Y. Jeng, Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen, and T. C. Wen, Adv Mater 25 (2013) 3727. [10] J. You, Y. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H Chang, G Li, and Y Yang, Applied Physics Letters, 105 (2014) 183902. [11] K. Wojciechowski, S. D. Stranks, A. Abate, G. Sadoughi, A. Sadhanala, N. Kopidakis, G. Rumbles, C.-Z. Li, R. H. Friend, A. K.-Y. Jen, and H. J. Snaith, ACS Nano. 8 (2014) 12701. [12] B. Conings, L. Baeten, C. De Dobbelaere, J. D'Haen, J. Manca, and H. G. Boyen, Adv. Mater. 26 (2014) 2041. [13] P. Docampo, F. C. Hanusch, S. D. Stranks, M. Döblinger, J. M. Feckl, M. Ehrensperger, N. K. Minar, M. B. Johnston, H. J. Snaith, and T. Bein, Adv. Energy Mater. 4 (2014) 1400355. [14] Junghwan Kim, Geunjin Kim, Tae Kyun Kim, Sooncheol Kwon, Hyungcheol Back, Jinho Lee, Seoung Ho Lee, Hongkyu Kang, and Kwanghee Lee, J. Mater. Chem. A 2 (2014) 17291. [15] Y. Dkhissi, F. Huang, S. Rubanov, M. Xiao, U. Bach, L. Spiccia, R. A. Caruso and Y.-B. Cheng, Journal of Power Sources 278 (2015) 325. [16] C. Y. Chang, C. Y. Chu, Y. C. Huang, C. W. Huang, S. Y. Chang, C. A. Chen, C. Y. Chao, and W. F. Su, ACS Appl Mater Interfaces 7 (2015) 4955. [17] D. Liu and T. L. Kelly, Nature Photonics 8 (2013) 133. [18] Henry J. Snaith, J. Phys. Chem. Lett. 4 (2013) 3623. [19] J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin and M. Gratzel, Nature 499 (2013) 316. [20] Y. Guo, C. Liu, K. Inoue, K. Harano, H. Tanaka and E. Nakamura, J. Mater. Chem. A 2 (2014) 13827. [21] J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C.-S. Lim, J. A. Chang, Y. H. Lee, H.-j. Kim, A. Sarkar, M. K. Nazeeruddin, M. Grätzel and S. I. Seok, Nat. Photonics 7 (2013) 486. [22] S. Ryu, J. Seo, S. S. Shin, Y. C. Kim, N. J. Jeon, J. H. Noh, and S. I. Seok, J. Mater. Chem. A 3 (2015) 3271. [23] S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T. C. Sum, and Y. M. Lam, Energy Environ. Sci. 7 (2014) 399. [24] C.-H. Chiang, Z.-L. Tseng, and C.-G. Wu, J. Mater. Chem. A 2 (2014) 15897. [25] J.-H. Im, I.-H. Jang, N. Pellet, M. Grätzel, N.-G. Park, Nat. Nature Nanotechnology 9 (2014) 927. [26] Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, J. Am. Chem. Soc. 136 (2014) 622. [27] Y. Li, J. K. Cooper, R. Buonsanti, Ci. Giannini, Y. Liu, F. M. Toma, and I. D. Sharp, J. Phys. Chem. Lett. 6 (2015) 493. [28] W. Nie, H.Tsai, R.Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H.-L. Wang, A. D. Mohite, Nature 347 (2015) 522. [29] Y. C. Zheng, S. Yang, X. Chen, Y. Chen, Y. Hou, and H. G. Yang, Chem. Mater. DOI: 10.1021/acs.chemmater.5b01924. [30] W. Zhang, M. Saliba, S. D. Stranks, Y. Sun, X. Shi, U. Wiesner, and H. J. Snaith, Nano Lett. 13 (2013) 4505. [31] A. Abate, D. J. Hollman, J. Teuscher, S. Pathak, R. Avolio, G. D’Errico, G. Vitiello, S. Fantacci, and H. J. Snaith, J. Am. Chem. Soc. 135 (2013) 13538. [32] S. N. Habisreutinger, T. Leijtens, G. E. Eperon, S. D. Stranks, R. J. Nicholas, and H. J. Snaith, Nano Lett. 14 (2014) 5561. [33] E. Edri, S. Kirmayer, D. Cahen and G. Hodes, J. Phys. Chem. Lett. 4 (2013) 897. [34] J. T. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. A.-Webber, J. Huang, M. Saliba, I. M.-Sero, J. Bisquert, H. J. Snaith and R. J. Nicholas, Nano Lett. 14 (2014) 724. [35] K. Wojciechowski, M. Saliba, T. Leijtens, A. Abate and H. J. Snaith, Energy Environ. Sci.7 (2014) 1142. [36] A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, J. Am. Chem. Soc. 131 (2009) 6050. [37] W. A. Laban and L. Etgar, Energy Environ. Sci. 6 (2013) 3249. [38] N. J. Jeon, J. Lee, J. H. Noh, M. K. Nazeeruddin, M. Grätzel and S. I. Seok, J. Am. Chem. Soc. 135 (2013) 19087. [39] A. Abrusci, S. D. Stranks, P. Docampo, H. L. Yip, A. K. Jen and H. J. Snaith, Nano Lett. 13 (2013) 3124. [40] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal and S. I. Seok, Nano Lett. 13 (2013) 1764. [41] S. Ryu, J. H. Noh, N. J. Jeon, Y. Chan Kim, W. S. Yang, J. Seo and S. I. Seok, Energy Environ. Sci. 7 (2014) 2614. [42] Z. Ku, Y. Rong, M. Xu, T. Liu and H. Han, Sci. Rep. 3 (2013) 3132. [43] Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, N. Fujikawa, Q. Shen, T. Toyoda, K. Yoshino, S. S. Pandey, T. Ma and S. Hayase, J. Phys. Chem. Lett. 5 (2014) 1004. [44] G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely and H. J. Snaith, Adv. Funct. Mater. 24 (2014) 151. [45] F. Huang, Y. Dkhissi, W. Huang, M. Xiao, I. Benesperi, S. Rubanov, Y. Zhu, X. Lin, L. Jiang, Y. Zhou, A. G.-Weale, J. Etheridge, C. R. McNeill, R. A. Caruso, U. Bach, L. Spiccia, and Y.-B. Cheng, Nano Energy 10 (2014) 10. [46] S. Chavhan, O.r Miguel, H.-J. Grande, V. G.-Pedro, R. S. Sánchez, E. M. Barea, I. M.-Seró, and R. T.-Zaera, J. Mater. Chem. A 2 (2014) 12754. [47] K. Wang, Y. Shi, Q. Dong, Y. Li, S. Wang, X. Yu, M. Wu, and T. Ma, J. Phys. Chem. Lett. 6 (2015) 755. [48] L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin and M. Gratzel, J. Am. Chem. Soc. 134 (2012) 17396. [49] B. J. Kim, D. H. Kim, Y.-Y. Lee, H.-W. Shin, G. S. Han, J. S. Hong, K. Mahmood, T. K. Ahn, Y.-C. Joo, K. S. Hong, N.-G. Park, S. Lee and H. S. Jung, Energy Environ. Sci.8 (2015) 916. [50] L. Zuo, Z. Gu, T. Ye, W. Fu, G. Wu, H. Li, and H. Chen, J. Am. Chem. Soc. 137 (2015) 2674. [51] J. Song, E. Zheng, J. Bian, X.-F. Wang, W. Tian, Y. Sanehira and T. Miyasaka, J. Mater. Chem. A 3 (2015) 10837. [52] L. Wang, W. Fu, Z. Gu, C. Fan, X. Yang, H. Li, and H. Chen, J. Mater. Chem. C 2 (2014) 9087. [53] J. Shi, J. Dong, S. Lv, Y. Xu, L. Zhu, J. Xiao, X. Xu, H. Wu, D. Li, Y. Luo and Q. Meng, Appl. Phys. Lett. 104 (2014) 063901. [54] D. Q. Bi, S. J. Moon, L. Haggman, G. Boschloo, L. Yang, E. M. J. Johansson, M. K. Nazeeruddin, M. Gratzel and A. Hagfeldt, RSC Adv. 3 (2013) 18762. [55] N. Pellet, P. Gao, G. Gregori, T. Y. Yang, M. K. Nazeeruddin, J. Maier and M. Gratzel, Angew. Chem., Int. Ed. 53 (2014) 3151. [56] H. Li, K. Fu, A. Hagfeldt, M. Grätzel, S. G. Mhaisalkar and A. C. Grimsdale, Angew. Chem., Int. Ed. 53 (2014) 4085. [57] A. Krishna, D. Sabba, H. Li, J. Yin, P. P. Boix, C. Soci, S. G. Mhaisalkar and A. C. Grimsdale, Chem. Sci. 5 (2014) 2702. [58] H. Choi, S. Paek, N. Lim, Y. H. Lee, M. K. Nazeeruddin and J. Ko, Chem.–Eur. J. 20 (2014) 10894. [59] P. Qin, S. Paek, M. I. Dar, N. Pellet, J. Ko, M. Grätzel and M. K. Nazeeruddin, J. Am. Chem. Soc. 136 (2014) 8516. [60] P. Qin, S. Tanaka, S. Ito, N. Tetreault, K. Manabe, H. Nishino, M. K. Nazeeruddin and M. Grätzel, Nat. Commun. 5 (2014) 3834. [61] L. Zheng, Y. H. Chung, Y. Ma, L. Zhang, L. Xiao, Z. Chen, S. Wang, B. Qu, and Q. Gong, Chem. Commun. 50 (2014) 11196. [62] A. Yella, L. P. Heiniger, P. Gao, M. K. Nazeeruddin, and M. Gratzel, Nano Lett. 14 (2014) 2591. [63] G. S. Han, H. S. Chung, B. J. Kim, D. H. Kim, J. W. Lee, B. S. Swain, K. Mahmood, J. S. Yoo, N.-G. Park, J. H. Lee, and H. S. Jung, J. Mater. Chem. A 3 (2015) 9160. [64] J. Zhang, E. J. J.-Pérez, I. M.-Seró, B. Viana, and T. Pauporté, J. Mater. Chem. A 3 (2015) 4909. [65] P.-W. Liang, C.-Y. Liao, C.-C. Chueh, F. Zuo , S. T. Williams, X.-K. Xin, J. Lin , and A. K.-Y. Jen, Adv. Mater. 26 (2014) 3748. [66] C.-C. Chueh, C.-Y. Liao, F. Zuo, S. T. Williams, P.-W. Lianga and A. K.-Y. Jen, J. Mater. Chem. A 3 (2015) 9058. [67] Y. Zhao, and K. Zhu, J. Phys. Chem. C 118 (2014) 9412. [68] Y. Chen, Y. Zhao, and Z. Liang, Chem. Mater. 27 (2015) 1448. [69] P. Qin, A. L. Domanski, A. K. Chandiran, R. Berger, H.-J. Butt, M. I. Dar, T. Moehl, N. Tetreault, P. Gao,S. Ahmad, M. K. Nazeeruddin and M. Gratzel, Nanoscale 6 (2014) 1508. [70] H.-H. Wang, Q. Chen, H. Zhou, L. Song, Z. S. Louis, N. D. Marco, Y. Fang, P. Sun, T.-B. Song, H. Chena and Y. Yang, J. Mater. Chem. A 3 (2015) 9108. [71] Y. Ding, X. Yao, X. Zhang, C. Wei and Y. Zhao, Journal of Power Sources 272 (2014) 351. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53775 | - |
dc.description.abstract | 近年,鈣鈦礦太陽能電池因為具有低成本、低溫溶液製程和高效率等特點,受到各方熱切的關注和研究。鈣鈦礦太陽能電池被評估具有極大的潛力成為新一代的再生能源。然而,鈣鈦礦層形貌的優劣對電池的效率有明顯的影響,所以近年來科學家們一直嘗試改良鈣鈦礦電池的製程方法,希望形成緻密的鈣鈦礦層以達到高效率。
我們以n-i-p結構的平面異質接面鈣鈦礦太陽能電池為基礎,結構為FTO/TiO2-NPs/CH3NH3PbI3-xClx/spiro-OMeTAD/Au,希望透過分別加入兩種不同的高子添加劑,polyvinylpyrrolidone(PVP)和 polyethylene glycol (PEG),有效地控制鈣鈦礦層的形貌。經過實驗發現,加入PVP會使鈣鈦礦層在電子傳導層上的覆蓋率下降,導致元件效率下降。然而加入PEG則有效增加鈣鈦礦層的覆蓋率,避免電子傳導層和電洞傳導層的接觸,有效提升元件的開路電壓(Voc)。在此,我們提出一個機制解釋PEG添加劑如何有效改善鈣鈦礦層的形貌:由於PEG的融點低於製作鈣鈦礦層過程中的熱退火溫度,所以融化的高分子會在鈣鈦礦層中流動並包覆住鈣鈦礦晶粒。由於高分子的包覆會阻礙鈣鈦礦晶粒在熱退火時的晶粒成長。在熱退火結束後,小顆的晶粒會形成一個緻密的鈣鈦礦層。 為了進一步了解影響PEG添加劑控制鈣鈦礦層形貌的因素,我們分別對PEG添加劑的分子量和添加量進行研究。首先,我們把不同分子量的PEG添加劑(6k, 12k和20k) 加入鈣鈦礦層,發現高分子量的PEG添加劑會因為熔點提高和分子鏈長增加,在鈣鈦礦層中的流動性下降,而無法有效包覆住每一顆晶粒。在熱退火結束後,鈣鈦礦層的晶粒會較為大顆,無法形成一個緻密層並覆蓋底部的電子傳導層。接著,我們在鈣鈦礦層中加入不同比例的PEG添加劑(0.5wt%, 1wt%, 3wt% 和5wt%),發現提高添加劑的數量可以有效提升鈣鈦礦層的覆蓋率並提升元件的開路電壓,但是加入過多的添加劑則會因為PEG的絕緣性質而使元件的短路電流(Jsc)因此下降。在經過調控之後,我們發現加入1 wt%的6k PEG添加劑可以最有效地改善鈣鈦礦層的形貌並把元件效率由11.56±0.40%提升至13.98±0.75%。 | zh_TW |
dc.description.abstract | Recently, the perovskite solar cell draws lots of attention due to the properties of low cost, low temperature solution processable and high efficiency. It has great potential to substitute the silicon based solar cell and become a new pollution free and renewable energy source of next generation. However, the morphology control of perovskite layer significantly affect the device performance. The scientists endeavor to produce a dense perovskite layer for high efficiency by many strategies, including solvent engineering, solvent annealing and additive, etc.
We fabricated the planar heterojunction perovskite solar with a n-i-p structure: FTO/TiO2-NPs/CH3NH3PbI3-xClx/spiro-OMeTAD/Au and incorporated two different polymer additives, polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG), into perovskite layer to control the morphology. With the PVP additive, the perovskite layer had poor coverage on electron transport layer (ETL). On the other hand, with the PEG additive, the coverage of perovskite layer was enhanced and the direct contact of ETL and hole transport layer (HTL) was avoided which effectively improve the Voc of the device. Because the melting point of PEG additive is lower than the thermal annealing temperature during the fabrication of perovskite layer, the melted PEG additive may surround the perovskite grains and retard the grain growth. Finally, the small perovskite grains constitute a dense perovskite layer with improved coverage. We also investigated the molecular weight effect and optimal amount of PEG additive in the perovskite layer for high efficient perovskite solar cell. First, we added different molecular weight PEG additive (6k, 12k and 20k) into the perovskite layer to study the molecular weight effect of PEG on the morphology of perovskite. The results indicated that the higher molecular weight of PEG additive has higher melting point and longer polymer chain length that may reduce the flow ability of polymer in the perovskite layer. The grain growth of perovskite grains wouldn’t be retarded by the polymer additive. Due to the large grain size, the perovskite layer would have a poor coverage. On the other hand, we added the PEG additive into the perovskite layer with different amount of PEG (0.5wt%, 1wt%, 3wt% and 5wt%). The coverage of perovskite layer and the Voc were enhanced with an increased amount of PEG additive. However, the Jsc of device was decreased when adding too much insulating PEG. With compromising between the Voc increases and Jsc decreases, 1 wt% of 6k PEG additive is the most appropriated amount and molecular weight for the PEG additive in the perovskite layer. As a result, the Voc was improved from 0.85V to 0.96V and the power conversion efficiency PCE was increased from 11.56±0.40% to 13.98±0.75%. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T02:29:26Z (GMT). No. of bitstreams: 1 ntu-104-R02527058-1.pdf: 5103252 bytes, checksum: 72e11565141282c199409b6fc9f9b43b (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 摘要 I
Abstract III Contents VI Tables VIII Figures IX Chapter 1 Introduction 1 1.1. Historical background and emergence of perovskite solar cell 1 1.2. Device architectures and fabrication processes of perovskite solar cell 6 1.2.1. n-i-p devices of perovskite solar cells 6 1.2.2. p-i-n devices of perovskite solar cell 9 1.3. The fabrication processes of perovskite layer 11 1.3.1. One-step deposition method 11 1.3.2. Two-step deposition method 11 1.3.3. Vapor-assisted solution process deposition method 12 1.3.4. Hot-casting deposition method 13 1.4. Basic working principle of n-i-p PHJ perovskite solar cell 17 1.4.1. Absorption of light 17 1.4.2. Generation of excitons 18 1.4.3. Transport of charge carriers 18 1.5 Characteristic analysis of perovskite solar cell 20 1.5.1. Open circuit voltage (Voc) 20 1.5.2. Short circuit current density (Jsc) 21 1.5.3. Fill factor (FF) 22 1.5.4. Power conversion efficiency (PCE) 23 1.5.5. External quantum efficiency (EQE) 24 1.6. Effect of additive to the morphology control of perovskite layer 25 1.7. Modification of TiO2 electron transport material 35 1.8. Motivation of my research 39 Chapter 2 Experimental Section 41 2.1. Chemicals and instrument 41 2.2. Synthesis and preparation of materials 42 2.2.1. Methyl ammonium iodide 42 2.2.2. TiO2 nanoparticles solution 43 2.2.3 Perovskite precursor solution 43 2.3. Fabrication of perovskite solar cells 44 2.4. Samples preparation for materials characterization 46 2.4.1. Sample preparation for scanning electron microscope (SEM) 46 2.4.2. Sample preparation for atomic force microscope (AFM) 46 Chapter 3 Results and Discussion 47 3.1 Low-temperature planar heterojunction perovskite solar cell 47 3.2 Morphology control of perovskite layer with 6k PEG additive 48 3.2.1 Optimization the amount of 6k PEG additives in the perovskite layer of n-i-p planar heterojunction perovskite solar cell 48 3.2.2. Top scanning electron microscope images of perovskite layer with different weight percent 6k PEG additives 50 3.2.3. Hypothesis of the formation of perovskite layer with 6k PEG additive 51 3.3 Morphology change of perovskite layer with PVP additives 52 3.3.1 Optimization the amount of PVP additives in the perovskite layer of n-i-p planar heterojunction perovskite solar cell 52 3.3.2 Top scanning electron microscope images of perovskite layer with different weight percent PVP additives 54 3.4 Morphology control of perovskite layer by PEG additive 55 3.4.1. Optimization amount of different molecular weight PEG additive in perovskite layer 56 3.4.2. Molecular weight effect of the PEG additive in perovskite layer 58 3.4.3. Top view scanning electron microscope images of perovskite layer with different molecular weight PEG additives 60 3.4.4. Roughness of perovskite layer with different molecular weight PEG additives 61 3.4.5. Mechanism of different molecular weight PEG additive to morphology control of perovskite layer 62 3.4.6. Top view scanning electron microscope images of perovskite layer with different weight percent 12k PEG additive 64 3.4.7. Surface roughness of perovskite layer with 12k PEG additive 66 Chapter 4 Conclusion 69 Chapter 5 Recommendation 72 References 75 | |
dc.language.iso | en | |
dc.title | 低溫溶液製程高效率n-i-p型鈣鈦礦太陽能電池 | zh_TW |
dc.title | Low-temperature solution processable n-i-p perovskite solar cell | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蔡豐羽,黃裕清,吳明忠 | |
dc.subject.keyword | 鈣鈦礦太陽能電池,高分子,添加劑,低溫溶液製程,平面異質接面, | zh_TW |
dc.subject.keyword | perovskite solar cell,polymer,additive,low temperature solution processable,planar heterojunction, | en |
dc.relation.page | 82 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-07-31 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 4.98 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。