請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53761
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 程蘊菁(Yen-Ching Chen) | |
dc.contributor.author | Yu-Ting Wang | en |
dc.contributor.author | 王育婷 | zh_TW |
dc.date.accessioned | 2021-06-16T02:29:08Z | - |
dc.date.available | 2020-09-14 | |
dc.date.copyright | 2015-09-14 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-07-31 | |
dc.identifier.citation | Petersen, R. C. (2011). Mild Cognitive Impairment. NEJM, 364, 2227-2234. Murphy, S. L., Xu, J. Q., Kochanek, K. D. (2013). Deaths: Final Data for 2010. National Vital Statistics Reports, 61(4). Fargo, K., Bleiler, L. (2014). 2014 Alzheimer’s Disease Facts and Figures. Alzheimer’s Dementia, 10(2), e47-e92. Sun, Y., Lee, H. J., Yang, S. C., Chen, T. F., Lin, K. N., Lin, C. C., Wang, P. N., Tang, L. Y., Chiu, M. J. (2014). A nationwide survey of mild cognitive impairment and dementia, including very mild dementia, in Taiwan. PLoS One, 9(6), e100303. Nicholson, J. K., Lindon, J. C., Holmes, E. (1999). 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli viamultivariate statistical analysus of biological NMR spectroscopic databiological NMR spectroscopic data. Xenobiotica, 29(11), 1181-1189. Brindle, J. T., Antti, H., Holmes, E., Tranter, G., Nicholson, J. K., Bethell, H. W., Clarke, S., Schofield, P. M., McKilligin, E., Mosedale, D. E., Grainger, D. J. (2002). Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nat Med, 8(12), 1439-1444. Salek, R. M., Maguire, M. L., Bentley, E., Rubtsov, D. V., Hough, T., Cheeseman, M., Nunez, D., Sweatman, B. C., Haselden, J. N., Cox, R. D., Connor, S. C., Griffin, J. L. (2007). A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human. Physiol Genomics, 29(2), 99-108. Tukiainen, T., Tynkkynen, T., Makinen, V. P., Jylanki, P., Kangas, A., Hokkanen, J., Vehtari, A., Grohn, O., Hallikainen, M., Soininen, H., Kivipelto, M., Groop, P. H., Kaski, K., Laatikainen, R., Soininen, P., Pirttila, T., Ala-Korpela, M. (2008). A multi-metabolite analysis of serum by 1H NMR spectroscopy: early systemic signs of Alzheimer's disease. Biochem Biophys Res Commun, 375(3), 356-361. Greenberg, N., Grassano, A., Thambisetty, M., Lovestone, S., Legido-Quigley, C. (2009). A proposed metabolic strategy for monitoring disease progression in Alzheimer's disease. Electrophoresis, 30(7), 1235-1239. Han, X., Rozen, S., Boyle, S. H., Hellegers, C., Cheng, H., Burke, J. R., Welsh-Bohmer, K. A., Doraiswamy, P. M., Kaddurah-Daouk, R. (2011). Metabolomics in Early Alzheimer's Disease: Identification of Altered Plasma Sphingolipidome Using Shotgun Lipidomics. PLoS One, 6(7), e21643. Li, N. J., Liu, W. T., Li, W., Li, S. Q., Chen, X. H., Bi, K. S., He, P. (2010). Plasma metabolic profiling of Alzheimer's disease by liquid chromatography/mass spectrometry. Clin Biochem, 43(12), 992-997. Oresic, M., Hyotylainen, T., Herukka, S. K., Sysi-Aho, M., Mattila, I., Seppanan-Laakso, T., Julkunen, V., Gopalacharyulu, P. V., Hallikainen, M., Koikkalainen, J., Kivipelto, M., Helisalmi, S., Lotjonen, J., Soininen, H. (2011). Metabolome in progression to Alzheimer's disease. Transl Psychiatry, 1, e57. Trushina, E., Dutta, T., Persson, X. M., Mielke, M. M., Petersen, R. C. (2013). Identification of Altered Metabolic Pathways in Plasma and CSF in Mild Cognitive Impairment and Alzheimer's Disease Using Metabolomics. PLoS One, 8(5), e63644. Wang, G., Zhou, Y., Huang, F. J., Tang, H. D., Xu, X. H., Liu, J. J., Wang, Y., Deng, Y. L., Ren, R. J., Xu, W., Ma, J. F., Zhang, Y. N., Zhao, A. H., Chen, S. D., Jia, W. (2014). Plasma metabolite profiles of Alzheimer's disease and mild cognitive impairment. J Proteome Res, 13(5), 2649-2658. Tsai, C. F., Lee, W. J., Wang, S. J., Shia, B. C., Nasreddine, Z., Fuh, J. L. (2012). Psychometrics of the Montreal Cognitive Assessment (MoCA) and its subscales: validation of the Taiwanese version of the MoCA and an item response theory analysis. Int Psychogeriatr, 24(4), 651-658. Noble, J. M., Manly, J. J., Schupf, N., Tang, M. X., Mayeux, R., Luchsinger, J. A. (2010). Association of C-reactive protein with cognitive impairment. Arch Neurol, 67(1), 87-92. Durga, J., van Boxtel, M. P. J., Schouten, E. G., Kok, F. J., Jolles, J., Katan, M. B., Verhoef, P. (2007). Effect of 3-year folic acid supplementation on cognitive function in older adults in the FACIT trial: a randomised, double blind, controlled trial. The Lancet, 369(9557), 208-216. Schafer, J. H., Glass, T. A., Bolla, K., Mintz, M., Jedlicka, A. E., Schwartz, B. S. (2005). Homocysteine and cognitive function in a population-based study of older adults. J Am Geriatr Soc., 53(3), 381-388. Economos, A., Wright, C. B., Moon, Y. P., Rundek, T., Rabbani, L., Paik, M. C., Sacco, R. L., Elkind, M. S. (2013). Interleukin 6 plasma concentration associates with cognitive decline: the northern Manhattan study. Neuroepidemiology, 40(4), 253-259. Ghebranious, N., Ivacic, L., Mallum, J., Dokken, C. (2005). Detection of ApoE E2, E3 and E4 alleles using MALDI-TOF mass spectrometry and the homogeneous mass-extend technology. Nucleic Acids Res, 33(17), e149. Viant, M. R. (2003). Improved methods for the acquisition and interpretation of NMR metabolomic data. Biochem Biophys Res Commun, 310(3), 943-948. Benjamin, Y., Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Statist. Soc., 5(1), 289-300. Nicholson, J. K., Foxall, J. D. (1995). 750 MHz 1H and 1H-13C NMR Spectroscopy of Human Blood Plasma. Analytical Chemistry, 67(5), 793-811. Ibanez, C., Simo, C., Martin-Alvarez, P. J., Kivipelto, M., Winblad, B., Cedazo-Minguez, A., Cifuentes, A. (2012). Toward a predictive model of Alzheimer's disease progression using capillary electrophoresis-mass spectrometry metabolomics. Anal Chem, 84(20), 8532-8540. Ling, J., Kritikos, M., Tiplady, B. (2009). Cognitive effects of creatine ethyl ester supplementation. Behav Pharmacol, 20(8), 673-679. Rae, C., Digney, A. L., McEwan, S. R., Bates, T. C. (2003). Oral creatine monohydrate supplementation improves brain performance: a double-blind, placebo-controlled, cross-over trial. Proc Biol Sci, 270(1529), 2147-2150. Owen, L., Sunram-Lea, S. I. (2011). Metabolic agents that enhance ATP can improve cognitive functioning: a review of the evidence for glucose, oxygen, pyruvate, creatine, and L-carnitine. Nutrients, 3(8), 735-755. Andres, R. H., Ducray, A. D., Schlattner, U., Wallimann, T., Widmer, H. R. (2008). Functions and effects of creatine in the central nervous system. Brain Res Bull, 76(4), 329-343. Aksenov M., Aksenova M., Butterfield A., R., M. (2000). Oxidative Modification of Creatine Kinase BB in Alzheimer's Disease Brain. Journal of Neurochemistry, 74(6), 2520-2527. Kaddurah-Daouk, R., Zhu, H., Sharma, S., Bogdanov, M., Rozen, S. G., Matson, W., Oki, N. O., Motsinger-Reif, A. A., Churchill, E., Lei, Z., Appleby, D., Kling, M. A., Trojanowski, J. Q., Doraiswamy, P. M., Arnold, S. E., Pharmacometabolomics Research, N. (2013). Alterations in metabolic pathways and networks in Alzheimer's disease. Transl Psychiatry, 3, e244. Motsinger-Reif, A. A., Zhu, H., Kling, M. A., Matson, W., Sharma, S., Fiehn, O., Reif, D. M., Appleby, D. H., Doraiswamy, P. M., Trojanowski, J. Q., Kaddurah-Daouk, R., Arnold, S. E. (2013). Comparing metabolomic and pathologic biomarkers alone and in combination for discriminating Alzheimer’s disease from normal cognitive aging. Acta Neuropathologica Communications, 1(28), 1-9. Sarter, M., Parikh, V. (2005). Choline transporters, cholinergic transmission and cognition. Nat Rev Neurosci, 6(1), 48-56. Shimazu T., Hirschey D., Huang J.Y., Ho T.Y., E., V. (2010). Acetate metabolism and aging: An emerging connection. Mechanisms of Ageing and Development, 131(7-8), 511-516. Furey, M. L., Pietrini, P., Haxby, J. V. (2000). Cholinergic enhancement and increased selectivity of perceptual processing during working memory. Science, 290, 2315-2319. Touboul, D., Gaudin, M. (2014). Lipidomics of Alzheimer's disease. Bioanalysis, 6(4), 541-561. Fahy, E., Subramaniam, S., Murphy, R. C., Nishijima, M., Raetz, C. R., Shimizu, T., Spener, F., van Meer, G., Wakelam, M. J., Dennis, E. A. (2009). Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res, 50 Suppl, S9-14. Bazinet, R. P., Laye, S. (2014). Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat Rev Neurosci, 15(12), 771-785. Nitsch, R. M., Blusztajn, J. K., Pittas, A. G., Slack, B. E., Growdon, J. H., Wurtman, R. J. (1992). Evidence for a membrane defect in Alzheimer disease brain. Proc Natl Acad Sci, 89, 1671-1675. Gasparovic, C., Prestopnik, J., Thompson, J., Taheri, S., Huisa, B., Schrader, R., Adair, J. C., Rosenberg, G. A. (2013). 1H-MR spectroscopy metabolite levels correlate with executive function in vascular cognitive impairment. J Neurol Neurosurg Psychiatry, 84(7), 715-721. Fonteh, A. N., Harrington, R. J., Tsai, A., Liao, P., Harrington, M. G. (2007). Free amino acid and dipeptide changes in the body fluids from Alzheimer's disease subjects. Amino Acids, 32(2), 213-224. Wiesel, F. A., Edman, G., Flyckt, L., Eriksson, A., Nyman, H., Venizelos, N., Bjerkenstedt, L. (2005). Kinetics of tyrosine transport and cognitive functioning in schizophrenia. Schizophr Res, 74(1), 81-89. Tam, S. Y., Roth, R. H. (1997). Mesoprefrontal Dopaminergic Neurons: Can Tyrosine Availability Influence Their Functions? Biochemical Pharmacology, 53, 441-453. Hedden, T., Gabrieli, J. D. (2004). Insights into the ageing mind: a view from cognitive neuroscience. Nat Rev Neurosci, 5(2), 87-96. Monirujjaman, M., Ferdouse, A. (2014). Metabolic and physiological roles of branched-chain amino acids. Advances in Molecular Biology, 2014, 1-6. Aquilani, R., Iadarola, P., Contardi, A., Boselli, M., Verri, M., Pastoris, O., Boschi, F., Arcidiaco, P., Viglio, S. (2005). Branched-chain amino acids enhance the cognitive recovery of patients with severe traumatic brain injury. Arch Phys Med Rehabil, 86(9), 1729-1735. Dirks, A. J., Hofer, T., Marzetti, E., Pahor, M., Leeuwenburgh, C. (2006). Mitochondrial DNA mutations, energy metabolism and apoptosis in aging muscle. Ageing Res Rev, 5(2), 179-195. Russell, S. J., Kahn, C. R. (2007). Endocrine regulation of ageing. Nat Rev Mol Cell Biol, 8(9), 681-691. Lee, P. L. (2014). The relationship between memory complaints, activity and perceived health status. Scand J Psychol, 55(2), 136-141. Comijs, H. C., Deeg, D. J. H., Dik, M. G., Twisk, J. W. R., Jonker, C. (2002). Memory complaints; the association with psycho-affective and health problems and the role of personality characteristics A 6-year follow-up study. Journal of Affective Disorders, 72, 157-165. Sato, Y., Suzuki, I., Nakamura, T., Bernier, F., Aoshima, K., Oda, Y. (2012). Identification of a new plasma biomarker of Alzheimer's disease using metabolomics technology. J Lipid Res, 53(3), 567-576. Li, R., Singh, M. (2014). Sex differences in cognitive impairment and Alzheimer's disease. Front Neuroendocrinol, 35(3), 385-403. Altmann, A., Tian, L., Henderson, V. W., Greicius, M. D., Alzheimer's Disease Neuroimaging Initiative, I. (2014). Sex modifies the APOE-related risk of developing Alzheimer disease. Ann Neurol, 75(4), 563-573. Mitsushima, D. (2010). Sex steroids and acetylcholine release in the hippocampus. 82, 263-277. Magkos, F., Tsekouras, Y. E., Prentzas, K. I., Basioukas, K. N., Matsama, S. G., Yanni, A. E., Kavouras, S. A., Sidossis, L. S. (2008). Acute exercise-induced changes in basal VLDL-triglyceride kinetics leading to hypotriglyceridemia manifest more readily after resistance than endurance exercise. J Appl Physiol (1985), 105(4), 1228-1236. Strittmatter, W. J., Saunders, A. M., Schmechel, D., Pericak-Vance, M., Enghild, J., Salvesen, G. S., Roses, A. D. (1993). Apolipoprotein E: High-avidity binding to ,B-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc. Natl. Acad. Sci. USA, 90, 1977-1981. Corder, E. H., Saunders, A. M., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., Small, G. W., Roses, A. D., Haines, J. L., Pericak-Vance, M. A. (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science, 261, 921-923. van den Kommer, T. N., Dik, M. G., Comijs, H. C., Fassbender, K., Lutjohann, D., Jonker, C. (2009). Total cholesterol and oxysterols: early markers for cognitive decline in elderly? Neurobiol Aging, 30(4), 534-545. Beckonert, O., Keun, H. C., Ebbels, T. M., Bundy, J., Holmes, E., Lindon, J. C., Nicholson, J. K. (2007). Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc, 2(11), 2692-2703. Yasuno, F., Tanimukai, S., Sasaki, M., Hidaka, S., Ikejima, C., Yamashita, F., Kodama, C., Mizukami, K., Michikawa, M., Asada, T. (2012). Association between cognitive function and plasma lipids of the elderly after controlling for apolipoprotein E genotype. Am J Geriatr Psychiatry, 20(7), 574-583. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53761 | - |
dc.description.abstract | 研究背景 全球的老化速度不斷上升,老年人口相關議題逐漸備受重視,伴隨認知功能退化的疾病─失智症,已成為老年族群中重要的健康議題。一維氫譜核磁共振儀是探討代謝質體中快速且簡易的分析平台,過去曾用來探討慢性疾病之致病機轉,然而,過去探討認知功能缺損其病理變化的代謝體學研究有限。因此,本研究運用一維氫譜核磁共振儀評估老年人血漿中代謝物與認知功能缺損之間的關聯性。 材料與方法 此橫斷性研究於2011至2013年間招募574位參加臺大醫院老人健檢且年齡介於65至84歲的長者。整體性認知功能利用台灣版蒙特利爾認知評估量表(MoCA-T)進行評估;其他特定的認知範疇則分別用魏氏記憶量表第三版(WMS-III)中邏輯記憶測驗一、二,及空間記憶廣度測驗,語意流暢度測驗,及路徑描繪測驗A、B與兩者之比值(B:A)進行評估。血液檢體則用來決定代謝物特徵及載脂蛋白E(APOE ε4)之基因型。代謝物圖譜均透過500兆赫(mHz)的核磁共振儀及一維NOESY脈衝進行分析。透過多變項邏輯斯迴歸模型探討代謝物與認知功能缺損之間的關聯性,並針對重要的干擾因子進行分層分析,例如:年齡分組(65至74歲、75至84歲)、性別、APOE ε4狀態。 研究結果 當acetate(調整勝算比=0.11,95%信賴區間=0.02-0.77)、lipid(CH2CH2C=C,調整勝算比=0.03,95%信賴區間=0.003-0.39)及creatine(調整勝算比=0.78,95%信賴區間=0.61-0.99)增加一個單位時,可降低記憶功能的缺損(魏氏記憶量表中邏輯記憶測驗部分)。此外,當tyrosine(調整勝算比=0.36,95%信賴區間=0.17-0.76)、creatine(調整勝算比=0.03,95% CI = 0.002-0.41)及valine(調整勝算比=0.13,95%信賴區間=0.03-0.53)增加一個單位時,可降低執行功能的缺損(路徑描繪測驗B及路徑描繪測驗B:A之比值)有關。針對重要的干擾因子進行分層分析後,發現上述關係在老老人(年齡介於75至84歲,調整勝算比介於0.001至0.58)及非APOE ε4帶因者(調整勝算比介於0.02至0.75)依舊維持統計顯著。此外,此研究發現認知功能表現存在性別差異,在男性長者中,當acetate(調整勝算比=0.02)、lipid(CH2CH2C=C,調整勝算比=0.002)及creatine(調整勝算比=0.62)增加一個單位時,可降低記憶功能的缺損;在女性長者中,當tyrosine(調整勝算比=0.27)、creatine(調整勝算比=0.009)及valine(調整勝算比=0.07)增加一個單位時,可降低執行功能的缺損。 結論 血漿中acetate及lipid (CH2CH2C=C)相對濃度上升時,與較佳之記憶功能表現有關(曲線下面積=0.69,95%信賴區間=0.64-0.73),這個關係特別在老老人及非APOE ε4帶因者依舊存在。由本研究結果可知,代謝體特徵也許可用於長者認知功能缺損的早期偵測,對於此研究的發現需要更進一步的驗證。 | zh_TW |
dc.description.abstract | Abstract Background: As the aging rate increases rapidly worldwide, dementia, which is characterized with cognitive impairment, has become a critical health issue in the elderly.Past studies exploring metabolome and cognitive impairment are limited. Proton nuclear magnetic resonance (1H NMR) is a fast and easy platform for assessing metabolome, which has been used to explain the pathogenesis of some chronic diseases. Therefore, this study utilized this platform to assess the association between metabolome and cognitive impairment. Methods: This cross-sectional study recruited 574 elderly aged 65 to 84 years from the annual Elderly Health CheckupProgram at National Taiwan University Hospitalfrom 2011 to 2013. Cognitive function wasassessed by Montreal Cognitive Assessment-Taiwan version for global cognition,and logical memory and digit span parts in Wechsler Memory Scale-third version (WMS-III), verbal fluency tests, and trail making tests for cognitive domain-specificvariables. Blood samples were collected to determine metabolic profile and apolipoprotein E (APOE) ε4 diplotype. All 1H NMR spectra of the plasma samples were acquired at 500.13MHzspectrometer with 1D nuclear overhauser effect spectroscopy sequence. Multivariable logistic regression was performed to explore the association between metabolites and cognitive impairment. Stratification analyses wereperformed by important confounders,e.g., age groups (65-74 and 75-84 years old), sex, and APOE ε4 status. Results:Elevated acetate[adjusted odds ratio (AOR) = 0.11, 95% CI = 0.02-0.77], lipid (CH2CH2C=C, AOR = 0.03, 95% CI = 0.003-0.39), and creatine (AOR = 0.78, 95% CI = 0.61-0.99) level protected against impaired memory function (logical memory tests in WMS-III). Moreover, elevated tyrosine (AOR = 0.36, 95% CI = 0.17-0.76), creatine (AOR = 0.03, 95% CI = 0.002-0.41), and valine (AOR = 0.13, 95% CI = 0.03-0.53) protected against impaired executive function (trail making test B and trail making test B:A). After stratification by important confounders, similar findings were observed in the old old (75-84 years old, AOR = 0.001-0.58) and APOE ε4 non-carriers (AOR = 0.02-0.75). Sexdifference on cognition was observed in this study. That is, the association between some metabolites [acetate, AOR = 0.02; lipid (CH2CH2C=C), AOR = 0.002; creatine, AOR = 0.62]protected againstimpaired memory function in men, while other metabolites (tyrosine, AOR = 0.27; creatine, AOR = 0.009; valine, AOR = 0.07) protected against impaired executive function in women. Conclusion: Elevated plasma acetate and lipid (CH2CH2C=C) protected against impaired memory function (area under the curve = 0.69, 95% CI = 0.64-0.73) especially in the old old, men, and APOE ε4 non-carriers.The metabolome profile may be useful for early detection of cognitive impairment in the elderly. More studies are warranted to confirm our findings. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T02:29:08Z (GMT). No. of bitstreams: 1 ntu-104-R02849036-1.pdf: 5217041 bytes, checksum: b771c74fc7ebc1d89d20c26565d23af5 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | Contents 謝辭 1 摘要 2 Abstract 4 Abbreviations 6 Figure index 9 Table index 10 Chapter 1. Introduction 11 1.1 Importance of cognitive impairment 11 1.2 Importance of metabolomics 11 1.3 Previous studies on metabolome and cognitive function 12 1.4 Research gap and hypotheses 12 Chapter 2. Materials and methods 14 2.1 Study population 14 2.2 Assessment of cognition and physical function 15 2.3 Sample collection and preparation 16 2.4 Genotyping of apolipoprotein E (APOE) ε4 16 2.5 Assessment of serum markers 17 2.6 1H NMR spectroscopy 17 2.7 NMR spectral preprocessing 18 2.8 Statistical analyses 18 2.8.1 Descriptive analysis 18 2.8.2. Identification of cognitive factors and candidate metabolites 18 2.8.3. Multivariable logistic regression analysis 19 2.8.4. Receiver operating characteristic (ROC) curve 19 Chapter 3. Results 21 3.1 Characteristics of the study population 21 3.2 Identification of specific cognitive factors 22 3.3 Candidate metabolites and the risk of cognitive impairment 23 3.4 Stratification by important confounders 24 3.5 Predictive performance of candidate metabolites 26 Chapter 4. Discussion 27 Chapter 5. Conclusion 34 References 35 Appendix 80 Figure index Figure 1. Flowchart of the participant recruitment 43 Figure 2. Scree plot of eigenvalue by cognitive factor 43 Figure 3. PLS-DA score plots from the analysis of 1H NMR spectra using plasma samples for global cognition and cognitive factors 45 Figure 4. ROC curve of models for the classification of high (T2 + T3) and low (T1) memory factor 46 Figure 5. ROC curve of models for the classification of high (T1 + T2) and low (T3) executive factor 47 Figure 6. Postulated mechanism relating important metabolites and cognitive impairment 48 Table index Table 1. Literature review on the association between metabolome and cognitive impairment 49 Table 2. Characteristics of included and excluded participants 54 Table 3. Characteristics of the study population by MoCA-T groups 56 Table 4. Characteristics of the study population by normal and impaired memory factor 58 Table 5. Characteristics of the study population by normal and impaired executive factor 60 Table 6. Factor loading matrix of cognitive factors 62 Table 7. Changes in plasma metabolites for memory and executive factors 63 Table 8. Selection of candidate metabolites for MoCA-T and different cognitive factors based on the values of AUC 65 Table 9. Changes in plasma metabolites for global cognition and cognitive factors 67 Table 10. Variables additional selected by stepwise logistic regression models for the corresponding cognitive variables 70 Table 11. Association between plasma metabolites and cognitive impairment 71 Table 12. Association between plasma metabolites and cognitive impairment by age groups 73 Table 13. Association between plasma metabolites and cognitive impairment by sex 75 Table 14. Association between plasma metabolites and cognitive impairment by APOE ε4 status 77 Table 15. ROC contrast tests of pairwise comparisons between different models to classify normal and impaired cognitive factor 79 | |
dc.language.iso | en | |
dc.title | 臺灣老年人代謝質體特徵及認知功能缺損之關聯性研究 | zh_TW |
dc.title | Association between Metabolome and the Risk of Cognitive Impairment in Taiwanese Elderly | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 林靖愉(Ching-Yu Lin) | |
dc.contributor.oralexamcommittee | 李文宗(Wen-Chung Lee),蔡孟勳(Mon-Hsun Tsai) | |
dc.subject.keyword | 代謝質體,一維氫譜核磁共振儀,認知功能缺損, | zh_TW |
dc.subject.keyword | metabolome,proton nuclear magnetic resonance,cognitive impairment, | en |
dc.relation.page | 80 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-07-31 | |
dc.contributor.author-college | 公共衛生學院 | zh_TW |
dc.contributor.author-dept | 流行病學與預防醫學研究所 | zh_TW |
顯示於系所單位: | 流行病學與預防醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 5.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。