Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53760
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉開溫
dc.contributor.authorHsin-Yi Linen
dc.contributor.author林欣儀zh_TW
dc.date.accessioned2021-06-16T02:29:06Z-
dc.date.available2018-08-03
dc.date.copyright2015-08-03
dc.date.issued2015
dc.date.submitted2015-07-31
dc.identifier.citation林瑞松。(1999)。文心蘭栽培管理及採後處理。屏東科技大學農推會農業推展手冊。17-23。
許榮華。 (2013) 。台灣文心蘭切花產銷現況及產業經營需求。台中區農業改良場一○一年專題討論專集.
許榮華、吳省寬、游婷媛、林于倫、徐懷恩、李泰昌、王美琪、郭雅芩、林瑞松。 (2010) 。外銷文心蘭切花生產品質之關鍵。花卉研究團隊研究現況與展望研討會專刊。pp: 17-33。
張朝晏。(2009)。文心蘭之健康管理. 花卉健康管理研討會.
張允瓊。(1996)。溫度、光度及肥料濃度對文心蘭生長與開花之影響。國立台灣大學園藝研究所碩士論文。
張允瓊。(1998)。光度對文心蘭假球莖生長及開花質之影響。宜蘭技術學報 1: 39-51。
黃怡菁。(1997)。文心蘭基本生長週期與花期修剪產期調節. 高雄區農業專訊22:16-17.
易美秀。(2011)。文心蘭栽培管理。臺中區農業專訊。74: 7-9。
謝家綺。(2014) 。穀胱甘肽的氧化與還原狀態在維他命C-穀胱甘肽循環鏈中與文心蘭開花機制之關聯性。國立台灣大學植物科學研究所碩士論文。
Ali, M. B., Hahn, E. J., and Paek, K. Y. (2005). Effects of temperature on oxidative stress defense systems, lipid peroxidation and lipoxygenase activity in Phalaenopsis. Plant Physiol. Biochem. 43: 213-223.
Almeselmani, M., Deshmukh, R. K., Sairam, R. K., Kushwaha, S. R., and Singh, T. P. (2006). Protective role of antioxidant enzymes under high temperature stress. Plant Sci. 171: 382–388.
Araki T. and Komeda Y. (1993). Analysis of the role of the late-flowering locus, GI, in the flowering of Arabidopsis thaliana. Plant J. 3:231–239.
Asada, K. (1984). Chloroplasts: formation of active oxygen and its scavenging. Meth. Enzymol. 105: 422-429.
Awasthi, R., Bhandari, K., and Nayyar, H. (2015). Temperature stress and redox homeostasis in agricultural crops. Front. Environ. Sci. 3:11.
Baena-Gonzalez E., Baginski S., Mulo P., Summer H., Aro E.M., and Link G. Chloroplast transcription at different light intensities. (2001) Glutathione-mediated phosphorylation of the major RNA polymerase involved in redox-regulated organellar gene expression. Plant Physiol. 127: 1044–1052.
Ball, L., Accotto, G. P., Bechtold, U., Creissen, G., Funck, D., Jimenez, A., Baldeep K., Nicola L., Jaime M., Helen R., Stanislaw K., and Mullineaux, P. M. (2004). Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis. Plant Cell 16: 2448-2462.
Barth, C., Moeder, W., Klessig, D. F., and Conklin, P. L. (2004). The timing of senescence and response to pathogens is altered in the ascorbate-deficient Arabidopsis mutant vitamin c-1. Plant Physiol. 134: 1784-1792.
Blokhina O., Virolainen E. and Fagerstedt K. (2003). Antioxidant, oxidative damage and oxygen deprivation stress: a review. Ann. Bot. 91:179–194.
Cao S, Ye M, and Jiang S. (2005). Involvement of GIGANTEA gene in the regulation of the cold stress response in Arabidopsis. Plant Cell Rep. 24:683-690.
Cao, S., Jiang, S., and Zhang, R. (2006). The Role of GIGANTEA Gene in Mediating the Oxidative Stress Response and in Arabidopsis. Plant Growth Regul. 48:261-270.
Chang, S., Puryear, J., and Cairney, J. (1993). A simple and efficient method for isolating RNA from pine trees. Plant Molecular Biology Reporter 11: 113-116.
Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium‐mediated transformation of Arabidopsis thaliana. Plant J. 16: 735-743.
Cobbett C.S. (2000). Phytochelatin biosynthesis and function in heavy metal detoxification. Curr. Opin. Plant. Biol. 3: 211– 216
Cobbett, C. S., May, M. J., Howden, R., and Rolls, B. (1998). The glutathione‐deficient, cadmium‐sensitive mutant, cad2–1, of Arabidopsis thaliana is deficient in γ‐glutamylcysteine synthetase. Plant J. 16: 73-78.
Corbesier L., Coupland G. (2006) The quest for florigen: A review of recent progress. J. Exp. Bot. 57:3395–3403.
Creissen G, Firmin J, Fryer M, Kular B, Leyland N, Reynolds H, Pastori G, Wellburn F, Baker N, Wellburn A, and Mullineaux P. (1999). Elevated glutathione biosynthetic capacity in the chloroplasts of transgenic tobacco plants paradoxically causes increased oxidative stress. Plant Cell 11: 1277–1292.
Dubreuil-Maurizi, C., Vitecek, J., Marty, L., Branciard, L., Frettinger, P., Wendehenne, D. Meyer A.J., Mauch F. and Poinssot, B. (2011). Glutathione deficiency of the Arabidopsis mutant pad2-1 affects oxidative stress-related events, defense gene expression, and the hypersensitive response. Plant Physiol. 157: 2000-2012.
Foyer C.H. and Noctor G. (2003). Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Plant Physiol. 119:355- 364.
Foyer C.H. and Noctor G. (2005). Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ. 28: 1056–107.
Foyer, C. H., Souriau, N., Perret, S., Lelandais, M., Kunert, K. J., Pruvost, C., and Jouanin, L. (1995). Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol. 109: 1047-1057.
Foyer, C.H., and Halliwell, B. (1976). The presence of glutathione and glutathione reductase in chloroplast: a proposed role in ascorbic acid metabolism. Planta 133: 21-25.
Foyer, C.H., and Noctor, G. (2011). Ascorbate and glutathione: the heart of the redox hub. Plant Physiol. 155: 2-18.
Frendo, P., Gallesi, D., Turnbull, R., Van de Sype, G., Hérouart, D., and Puppo, A. (1999). Localisation of glutathione and homoglutathione in Medicago truncatulais correlated to a differential expression of genes involved in their synthesis. Plant J. 17: 215-219.
Gao, X. H., Bedhomme, M., Michelet, L., Zaffagnini, M., & Lemaire, S. D. (2009). Glutathionylation in Photosynthetic Organisms. Adv. Bot. Res. 52: 363-403.
Gechev T.S., Van Breusegem F., Stone J.M., Denev I. and Laloi C. (2006). Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. BioEssays 28: 1091–1101
Gil V.L. and Zaidan L.B.P. (1996). Flowering of Oncidium flexuosum under controlled day length condition. Orchid Review 104:186-188.
Gill S.S. and Tuteja N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48: 909–930.
Hartmann T., Honicke P., Wirtz M., Hell R., Rennenberg H., and Kopriva S. (2004). Regulation of sulphate assimilation by glutathione in poplars (Populus tremula x P. alba) of wild type and overexpressing gamma-glutamylcysteine synthetase in the cytosol. J. Exp. Bot. 55: 837–845.
He J., Khoo G.H and Hew C.S. (1998). Susceptibility of CAM Dendrobium leaves and flowers to high light and high temperature under natural tropical conditions. Environ. Exp. Bot. 40:255-264.
Hedden, P. (1997). Gibberellin biosynthesis. eLS.
Henmi K, Tsuboi S, Demura T, Fukuda H, Iwabuchi M, and Ogawa K. (2001). A possible role of glutathione and glutathione disulfide in tracheary element differentiation in the cultured mesophyll cells of Zinnia elegans. Plant Cell Physiol. 42: 673–676.
Hew C.S. and Yong J.W. (1994). Growth and photosynthesis of Oncidium Goldiana. J. Hort. Sci. 69:809-819.
Hodges D.M., Andrews C.J., Johnson D.A., Hamilton R.I. (1996). Antioxidant compound responses to chilling stress in differentially sensitive inbred maize lines. Physiol. Plant 98:685–692.
Imaizumi T, Kay S.A. (2006) Photoperiodic control of flowering: Not only by coincidence. Trends Plant Sci. 11:550–558.
Isabella Dalle-Donne, Ranieri R., Graziano C., Daniela G., Aldo M. (2009). Protein S-glutathionylation: a regulatory device from bacteria to humans. Trends Biochem. Sci. 34: 85-96.
Ito H, Iwabuchi M, and Ogawa K. (2003). The sugar-metabolic enzymes aldolase and triose-phosphate isomerase are targets of glutathionylation in Arabidopsis thaliana: detection using biotinylated glutathione. Plant Cell Physiol. 44: 655–660.
Ivanova, L. A., Ronzhina, D. A., Ivanov, L. A., Stroukova, L. V., Peuke, A. D., and Rennenberg, H. (2011). Over‐expression of gsh1 in the cytosol affects the photosynthetic apparatus and improves the performance of transgenic poplars on heavy metal‐contaminated soil. Plant Biology 13: 649-659.
James, A. B., Syed, N. H., Bordage, S., Marshall, J., Nimmo, G. A., Jenkins, G. I., and Nimmo, H. G. (2012). Alternative splicing mediates responses of the Arabidopsis circadian clock to temperature changes. Plant Cell 24: 961-981.
Jarillo, J. A., and Piñeiro, M. (2015). H2A. Z mediates different aspects of chromatin function and modulates flowering responses in Arabidopsis. Plant J. 83: 96-109.
Jez, J. M., Cahoon, R. E., and Chen, S. (2004). Arabidopsis thaliana Glutamate-Cysteine Ligase functional properties, kinetic mechanism, and regulation of activity. J. Biol. Chem. 279: 33463-33470.
Jiménez A., Hernandez J.A., del Rio L.A. and Sevilla F. (1997). Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol. 114: 275–284.
Jiménez, A., Hernández, J. A., Pastori, G., del Rı́o, L. A., and Sevilla, F. (1998). Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant Physiol. 118: 1327-1335.
KANGASJÄRVI, J., Jaspers, P., and Kollist, H. (2005). Signalling and cell death in ozone‐exposed plants. Plant Cell Environ. 28: 1021-1036.
Koini, M. A., Alvey, L., Allen, T., Tilley, C. A., Harberd, N. P., Whitelam, G. C., and Franklin, K. A. (2009). High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Curr. Biol. 19: 408-413.
Koornneef M., Hanhart C.J., van der Veen J.H. (1991). A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol. Gen. Genet. 229:57–66.
Kumar, R. R., Goswami, S., Singh, K., Rai, G. K., and Rai, R. D. (2013). Modulation of redox signal transduction in plant system through induction of free radical/ROS scavenging redox-sensitive enzymes and metabolites Aust. J. Crop Sci. 7: 1744-1751.
Kumar, S. V., and Wigge, P. A. (2010). H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell 140: 136-147.
Kumar, S. V., Lucyshyn, D., Jaeger, K. E., Alós, E., Alvey, E., Harberd, N. P., and Wigge, P. A. (2012). Transcription factor PIF4 controls the thermosensory activation of flowering. Nature 484: 242-245.
Kusakina, J., Gould, P. D., and Hall, A. (2014). A fast circadian clock at high temperatures is a conserved feature across Arabidopsis accessions and likely to be important for vegetative yield. Plant Cell Environ. 37: 327-340.
Le Martret, B., Poage, M., Shiel, K., Nugent, G. D., and Dix, P. J. (2011). Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase, glutathione reductase, and glutathione‐S‐transferase, exhibit altered anti‐oxidant metabolism and improved abiotic stress tolerance. Plant biotechnol. J. 9: 661-673.
Lee N. and Lee C.Z. (1993). Growth and flowering of Cymbidium ensifolium var. misericors as influenced by temperature. Acta. Hort. 337:123-130.
Levitt J. (1962). A sulfhydryl-disulfide hypothesis of frost injury and resistance in plants. J. Theor. Biol. 3:355–391.
Li, H., Wang, X. M., Chen, L., Ahammed, G. J., Xia, X. J., Shi, K., and Zhou, Y. H. (2013). Growth temperature-induced changes in biomass accumulation, photosynthesis and glutathione redox homeostasis as influenced by hydrogen peroxide in cucumber. Plant Physiol. Biochem. 71: 1-10.
Ma, Y. H., Ma, F. W., Zhang, J. K., Li, M. J., Wang, Y. H., and Liang, D. (2008). Effects of high temperature on activities and gene expression of enzymes involved in ascorbate–glutathione cycle in apple leaves. Plant Sci. 175: 761–766.
Mannervik, B. (2001). Measurement of glutathione reductase activity. Curr. Protoc. Toxicol. Chapter7: Unit7.2.
Marrs K. (1996). The functions and regulation of glutathione S- transferases in plants. Annu. Rev. Plant Biol. 47: 127–158.
May M.J., Vernoux T., Leaver C.J., van Montagu M., and Inzé D. (1998). Glutathione homeostasis in plants: implications for environmental sensing and plant development. J. Exp. Bot. 49: 649–667.
Meyer A. (2008). The integration of glutathione homeostasis and redox signalling. J. Plant Physiol. 165:1390–1403.
Meyer, A. J., Brach, T., Marty, L., Kreye, S., Rouhier, N., Jacquot, J. P., and Hell, R. (2007). Redox‐sensitive GFP in Arabidopsis thaliana is a quantitative
biosensor for the redox potential of the cellular glutathione redox buffer. Plant J. 52: 973-986.
Mou, Z., Fan, W., and Dong, X. (2003). Inducers of Plant Systemic Acquired Resistance Regulate NPR1 Function through Redox Changes. Cell 113: 935-944.
Naser A., Shahid U., and Ming-Tsair C. (2010). Ascorbate-Glutathione Pathway and Stress Tolerance in Plants. Springer Science and Business Media.
Ogawa K., Hatano-Iwasaki A., Yanagida M., and Iwabuchi M. (2004). Level of glutathione is regulated by ATP-dependent ligation of glutamate and cysteine through photosynthesis in Arabidopsis thaliana: mechanism of strong interaction of light intensity with flowering. Plant Cell Physiol. 45: 1–8.
Ogawa K., Tasaka Y., Mino M., Tanaka Y., and Iwabuchi M. (2001). Association of glutathione with flowering in Arabidopsis thaliana. Plant Cell Physiol. 42: 524–530.
Parisy, V., Poinssot, B., Owsianowski, L., Buchala, A., Glazebrook, J., and Mauch, F. (2007). Identification of PAD2 as a γ‐glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis. Plant J. 1: 159-172.
Pasternak, M., Lim, B., Wirtz, M., Hell, R., Cobbett, C. S., and Meyer, A. J. (2008). Restricting glutathione biosynthesis to the cytosol is sufficient for normal plant development. Plant J. 53: 999-1012.
Qin, X., and Zeevaart, J. A. (1999). The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. Proc. Natl. Acad. Sci. U. S. A. 96: 15354-15361.
Rahman, I., Kode, A., and Biswas, S.K. (2007). Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nature Protocols 1: 3159-3165
Rani, B., Dhawan, K., Jain, V., Chhabra, M. L., and Singh, D. (2013). High Temperature Induced Changes in Antioxidative Enzymes in Brassica juncea (L) Czern & Coss.
Rausch T., Wachter A. (2005). Sulfur metabolism: a versatile platform for launching defence operations. Trends Plant Sci. 10: 503-509.
Rédei G.P. (1962). Supervital mutants of Arabidopsis. Genetics 47:443–460.
Salomé, P. A., Weigel, D., and McClung, C. R. (2010). The role of the Arabidopsis morning loop components CCA1, LHY, PRR7, and PRR9 in temperature compensation. Plant Cell 22: 3650-3661.
Samach, A., and Wigge, P. A. (2005). Ambient temperature perception in plants. Curr. Opin. Plant Bio. 8: 483-486.
Sasaki, H., Giblin, F. J., Winkler, B. S., Chakrapani, B., Leverenz, V., and Shu C. C. (1995). A protective role for glutathione-dependent reduction of
dehydroascorbic acid in lens epithelium. Invest. Ophthalmol. Vis. Sci. 36: 1804-1817.
Sawa, M., and Kay, S. A. (2011). GIGANTEA directly activates Flowering Locus T in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 108: 11698-11703.
Sečenji M., Hideg E., Bebes A. and Györgyey J. (2010). Transcriptional differences in gene families of the ascorbate–glutathione cycle in wheat during mild water deficit. Plant Cell Rep. 29:37–50.
Senda K and Ogawa K. (2004). Induction of PR-1 accumulation accompanied by runaway cell death in the lsd1 mutant of Arabidopsis is dependent on glutathione levels but independent of the redox state of glutathione. Plant Cell Physiol. 45: 1578–1585.
Smirnoff N. (2000). Ascorbic acid: metabolism and functions of a multifacetted molecule. Curr. Opin. Plant Biol. 3: 229-235.
Song, Y. H., Ito, S., and Imaizumi, T. (2013). Flowering time regulation: photoperiod-and temperature-sensing in leaves. Trends Plant Sci. 18: 575-583.
Stavang, J. A., Gallego‐Bartolomé, J., Gómez, M. D., Yoshida, S., Asami, T., Olsen, J. E., García-Martínez J.L., Alabadí D. and Blázquez, M. A. (2009). Hormonal regulation of temperature‐induced growth in Arabidopsis. Plant J. 60: 589-601.
Tahmasebi, A., Aram, F., Ebrahimi, M., Mohammadi-Dehcheshmeh, M., and Ebrahimie, E. (2012). Genome-wide analysis of cytosolic and chloroplastic isoforms of glutathione reductase in plant cells. Plant Omics J. 5:94-102
Thines, B. C., Youn, Y., Duarte, M. I., and Harmon, F. G. (2014). The time of day effects of warm temperature on flowering time involve PIF4 and PIF5. J. Exp. Bot. 65: 1141-1151.
Tipple T.E. and Rogers L.K. (2012). Methods for the determination of plasma or tissue glutathione levels. Methods Mol. Biol. 889: 315–324.
Trivedi, D. K., Gill, S. S., Yadav, S., and Tuteja, N. (2013). Genome-wide analysis of glutathione reductase (GR) genes from rice and Arabidopsis. Plant Signal. Behav. 8:e23021.
Tseng T.S., Salomé P.A., McClung C.R., Olszewski N.E. (2004). SPINDLY and GIGANTEA interact and act in Arabidopsis thaliana pathways involved in light responses, flowering, and rhythms in cotyledon movements. Plant Cell 16:1550-63
Vacca, R. A., de Pinto, M. C., Valenti, D., Passarella, S., Marra, E., and De Gara, L. (2004). Production of reactive oxygen species, alteration of cytosolic ascorbate peroxidase, and impairment of mitochondrial metabolism are early events in heat shock-induced programmed cell death in tobacco Bright Yellow 2 cells. Plant Physiol. 134: 1100–1112.
Veljovic-Jovanovic, S. D., Pignocchi, C., Noctor, G., and Foyer, C. H. (2001). Low ascorbic acid in the vtc-1 mutant of Arabidopsis is associated with decreased growth and intracellular redistribution of the antioxidant system. Plant Physiol. 127: 426-435.
Vernoux, T., Wilson, R. C., Seeley, K. A., Reichheld, J. P., Muroy, S., Brown, S., Maughan S.C., Cobbett C.S., Van Montagu M., Inzé D., May M.J., and Sung Z.R. (2000). The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell 12: 97-109.
Vinocur B. and Altman A. (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr. Opin. Biotechnol. 16:123-32.
Wachter, A., Wolf, S., Steininger, H., Bogs, J., and Rausch, T. (2005). Differential targeting of GSH1 and GSH2 is achieved by multiple transcription initiation: implications for the compartmentation of glutathione biosynthesis in the Brassicaceae. Plant J. 41: 15-30.
Wigge, P.A. (2013). Ambient temperature signalling in plants. Curr. Opin. Plant. Biol. 16: 661-666.
Wolkovich E.M., Cook B.I., Allen J.M., Crimmins T.M., Betancourt J.L., Travers S.E., Pau S., Regetz J., Davies T.J., Kraft N.J., Ault T.R., Bolmgren K., Mazer S.J., McCabe G.J., McGill B.J., Parmesan C., Salamin N., Schwartz M.D., and Cleland E.E. (2012). Warming experiments underpredict plant phenological responses to climate change. Nature 485: 494-497.
Chang Y.Y., Kao C.W. and Yang C.H. (2007). Functional Analysis and Characterization of GIGANTEA (GI) and CONSTANS (CO)-like Orthologues from Orchid (Oncidium Gower Ramsey). unpublished data.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53760-
dc.description.abstract前人研究指出高溫誘導文心蘭開花與維生素C (ascorbate, AsA)及穀胱甘肽(glutathione, GSH) 的氧化還原狀態相關,並受AsA-GSH循環及穀胱甘肽生合成路徑影響。其參與酵素包含穀胱甘肽還原酶glutathione reductase (OgGR), γ-ECS,γ-glutamylcysteine synthetase (OgGSH1)及穀胱甘肽合成酶glutathione synthase (OgGSH2)。文心蘭GIGANTEA (GI) 及 FLOWERING LOCUS T (FT) 等開花基因的表現量亦顯著上升。然而,高溫誘導文心蘭開花路徑中,穀胱甘肽氧化還原狀態如何調控開花基因的表現,目前尚不明瞭。首先,我們利用氧化態維生素C處理文心蘭,結果可使穀胱甘肽還原態下降、氧化態上升、脫氫維他命C還原酶活性上升,所以可確定AsA-GSH循環存在於文心蘭中。接著,我們利用文心蘭穀胱甘肽還原酶(OgGR), γ-ECS (OgGSH1)及穀胱甘肽合成酶(OgGSH2)等基因,分別過表現於阿拉伯芥,結果顯示經30度高溫處理後,過表現轉殖株較WT延遲開花,且穀胱甘肽還原酶活性下降、穀胱甘肽氧化還原比例會隨時間提高,而WT則下降。反之在阿拉伯芥之穀胱甘肽代謝相關突變株,cad2、pad2 及gr1,與過表現轉殖株作比較之結果顯示,經30度高溫處理後,pad2, cad2, gr1有提早開花的情形,且穀胱甘肽還原酶活性及穀胱甘肽氧化還原比例均顯著下降。因此可知,雖然穀胱甘肽氧化還原比例於過表現轉植株及突變株本身即不相同,但處理高溫後即可明顯看到開花與穀胱甘肽氧化還原比例存有正向關聯性。此外,我們亦釣取文心蘭GI的啟動子,並預測感興趣的cis-element,結果說明文心蘭的GI可能被環境逆境調控,故推測文心蘭的GI和環境逆境所產生的氧化還原變化有交互作用。文心蘭的GI蛋白表現於細胞質及細胞核,說明文心蘭的GI具有調控下游開花基因的潛力。根據實驗結果推測,高溫造成的穀胱甘肽氧化還原變化並使文心蘭提早開花的路徑,是藉由穀胱甘肽的生合成及代謝途徑,進而影響下游GI的表現所造成的結果。zh_TW
dc.description.abstractPrevious study reveals that high ambient temperature make Oncidesa early flowering through changing ascorbate (AsA) and glutathione (GSH) redox status (AsA/DHA) (GSH/GSSG) via AsA-GSH cycle and GSH biosynthesis. Glutathione reductase (OgGR), γ-glutamylcysteine synthetase (OgGSH1) and glutathione synthase (OgGSH2), as well as floral genes, such as GIGANTEA (GI) and FLOWERING LOCUS T (FT) are related to this pathway. However, the mechanism of GSH redox regulated floral genes on high temperature-induced flowering in Oncidesa is still unknown. First, we treat Oncidesa with dehydroascorbate for 14 days and find glutathione content decrease and glutathione disulfide content increase and dehydroascorbate reductase activity increase. Therefore, we can confirm that the AsA-GSH cycle exist in Oncidesa. Thus, we over-express OgGR, OgGSH1, and OgGSH2 in Arabidopsis to study the role of GSH on high temperature-induced flowering. The results show the overexpression plant delay flowering and increase of GSH redox. Otherwise, GSH metabolism related mutants in Arabidopsis, cad2, pad2, and gr1 which are opposite to the overexpression lines, showed early flowering with low GSH content, indicating GSH redox status and which key regulating enzyme involved in high-temperature induced flowering. We clone GI promoter from Oncidesa, and predict the cis-element, revealing that GI is probably regulated by stress, and implies the interaction between GI and redox signaling. Moreover, Oncidesa GI is located in nucleus, indicating that GI potentially regulate downstream floral gene. We suggest that the change of GSH redox ratio under high-temperature can induce early flowering via GSH biosynthesis/metabolism and influence the gene expression of GI in Oncidesa.en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:29:06Z (GMT). No. of bitstreams: 1
ntu-104-R02b42010-1.pdf: 3823142 bytes, checksum: 3a8ad710b0384ea7ca1dbabcbad48f90 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents目錄
中文摘要.....................................................................................................................1
英文摘要.......................................................................................................................2
目錄...............................................................................................................................3
圖目錄...........................................................................................................................5
附錄目錄......................................................................................................................7
第一章前言.................................................................................................................8
第一節文心蘭概述.....................................................................................................8
第二節植物於氧化逆境下的反應與抗氧化物質...................................................10
第三節植物的開花路徑與開花基因.......................................................................17
第四節前人研究回顧及研究目的...........................................................................20
第二章、材料與方法.................................................................................................22
第一節實驗材料.......................................................................................................22
第二節實驗方法.......................................................................................................22
第三章結果............................................................................................................... 32
第一節文心蘭中維生素C相關藥劑處理對穀胱甘肽氧化還原之變化................33
第二節文心蘭OgGSH1, OgGSH2, OgGR全長序列的分析...................................33
第三節文心蘭OgGSH1, OgGSH2, OgGR之表現位置...........................................34
第四節文心蘭OgGSH1, OgGSH2, OgGR過表現之阿拉伯芥轉殖株建構及分析
....................................................................................................................36
第五節溫度處理對文心蘭OgGSH1, OgGSH2, OgGR之過表現阿拉伯芥轉殖株之
穀胱甘肽氧化還原狀態變化與開花時間的關係....................................38
第六節 溫度處理對阿拉伯芥穀胱甘肽突變株之穀胱甘肽氧化還原狀態變化與開
花時間的關係............................................................................................41
第七節文心蘭GIGANTEA可能參與之開花調控...................................................43
第四章討論............................................................................................................... 45
第一節 文心蘭維生素C氧化還原狀態與穀胱甘肽C氧化還原變化之關係.........45
第二節文心蘭OgGSH1, OgGSH2, OgGR 蛋白功能探討與穀胱甘肽含量及氧化
還原狀態變化之連結對開花的關係........................................................46
第三節溫度對穀胱甘肽氧化還原狀態變化及開花的影響...................................48
第四節GSH1, GSH2, GR影響穀胱甘肽氧化還原狀態對開花的影響..................50
第五節溫度及GSH1, GSH2, GR間的交感作用調控開花......................................52
第六節文心蘭GIGANTEA可能參與之開花調控...................................................54
第七節未來展望.......................................................................................................55
參考文獻..................................................................................................................... 56
圖目錄
圖一、還原態(AsA) 及氧化態(DHA) 維生素C處理對文心蘭假球莖中穀胱甘
肽含量及酵素活性變化的情形......................................................................71
圖二、文心蘭GSH1之保守區域分析、胺基酸編碼序列比對及親緣演化樹分析...72
圖三、文心蘭GSH2之保守區域分析、胺基酸編碼序列比對及親緣演化樹分析...73
圖四、文心蘭GR之保守區域分析、胺基酸編碼序列比對及親緣演化樹分析... 74
圖五、文心蘭GSH1, GSH2, GR蛋白之次細胞表現位置......................................75
圖六、文心蘭GSH1, GSH2, GR基因之過表現載體建構........................ ................76
圖七、文心蘭GSH1, GSH2, GR基因過表現於阿拉伯芥植株之基因表現量分析77
圖八、檢測文心蘭GSH1, GSH2, GR基因過表現於阿拉伯芥植株之穀胱甘肽含量
及酵素活性.................................................................................................... .78
圖九、文心蘭GSH1, GSH2, GR基因過表現於阿拉伯芥植株之表型觀察......... ...79
圖十、文心蘭GSH1, GSH2, GR基因過表現於阿拉伯芥突變株cad2, pad2, gr1之穀
胱甘肽含量及酵素活性................................................................................. 80
圖十一、22度短日照下文心蘭GSH1, GSH2, GR基因過表現於阿拉伯芥植株之開
花時間的影響............................................................................................. 81
圖十二、高溫處理對文心蘭GSH1, GSH2, GR基因過表現於阿拉伯芥植株之開花
時間的影響................................................................................................. 82
圖十三、溫度處理後文心蘭GSH1, GSH2, GR基因過表現於阿拉伯芥植株之酵素
活性............................................................................................................. 83
圖十四、溫度處理後文心蘭GSH1, GSH2, GR基因過表現於阿拉伯芥植株之穀胱
甘肽氧化及還原態含量............................................................................. 84
圖十五、溫度處理後文心蘭GSH1, GSH2, GR基因過表現於阿拉伯芥植株之穀胱
甘肽氧化還原比例變化............................................................................. 85
圖十六、溫度處理對阿拉伯芥突變株之開花時間的影響..................................... 86
圖十七、溫度處理後阿拉伯芥突變株之酵素活性................................................. 87
圖十八、溫度處理後阿拉伯芥突變株之穀胱甘肽含量......................................... 88
圖十九、文心蘭GI蛋白之次細胞表現位置............................................................ 89
圖二十、文心蘭GI啟動子釣取................................................................................ 90
附錄目錄
附錄一、文心蘭Gower Ramsey品系親緣圖譜........................................................ 91
附錄二、文心蘭Gower Ramsey之生長週期............................................................ 92
附錄三、維生素C-穀胱甘肽循環(AsA-GSH cycle).............................................. 93
附錄四、穀胱甘肽 (GSH) 生合成路徑示意圖...................................................... 94
附表一、植物重要的抗氧化酵素............................................................................. 95
附表二、引子序列..................................................................................................... 96
附表三、檢索表......................................................................................................... 97
dc.language.isozh-TW
dc.subject文心蘭zh_TW
dc.subject維他命C-穀胱甘?循環zh_TW
dc.subject穀胱甘?氧化還原比例zh_TW
dc.subject開花zh_TW
dc.subject高溫zh_TW
dc.subjectOncidesaen
dc.subjectAsA-GSH cycleen
dc.subjectGSH redoxen
dc.subjectfloweringen
dc.subjecthigh temperatureen
dc.title穀胱甘肽氧化還原狀態影響文心蘭的高室溫誘導
開花機制
zh_TW
dc.titleGlutathione redox status affects the high ambient
temperature-induced flowering in Oncidesa
en
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳虹樺,詹明才,王淑珍
dc.subject.keyword維他命C-穀胱甘?循環,穀胱甘?氧化還原比例,開花,高溫,文心蘭,zh_TW
dc.subject.keywordAsA-GSH cycle,GSH redox,flowering,high temperature,Oncidesa,en
dc.relation.page97
dc.rights.note有償授權
dc.date.accepted2015-08-03
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
3.73 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved