Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53719
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor羅仁權(Ren C. Luo)
dc.contributor.authorJui Wangen
dc.contributor.author王蕊zh_TW
dc.date.accessioned2021-06-16T02:28:15Z-
dc.date.available2018-08-04
dc.date.copyright2015-08-04
dc.date.issued2015
dc.date.submitted2015-08-03
dc.identifier.citation[1] http://www-kismet.iai.fzk.de/TRAINER/mic_def1.html
[2] http://www.bonati.com
[3] US patent 5203781, Bonati, Alfred O.; Ware, Philip, 'Lumbar arthroscopic laser sheath', issued 1993-4-20
[4] G. Buess, A. Arezzo, M. Schurr, F. Ulmer, and C. Nobman, “A new re-mote-controlled endoscope positioning system for endoscopic solo surgery,” Sur-gical Endoscopy, pp. 395 – 399, 1999.
[5] M. Winkler, S. Erbse, K. Radermacher, G. Rau and W. Rath, “ An automatic cam-era-holding system for gynecologic laparoscopy” in Journal of the American Association of Gynecologic Laparoscopists, vol. 8, May 2001, pp. 303-306.
[6] K. T. den Boer, J. Dankelman, D. J. Gouma and H. G. Stassen, “Preoperative anal-ysis of the surgical procedure” in Journal of the Surgical Endoscopy and Other In-terventional Techniques, vol. 16, March 2002, pp. 492-499.
[7] C. Bergeles and G.-Z. Yang, “From passive tool holders to microsurgeons: Safer, smaller, smarter surgical robots,” IEEE Trans. Biomed. Eng., vol. 61, no. 5, pp. 1565–1576, May 2014.
[8] W.H. Shin and D.S. Kwon, “Surgical robot system for single-port surgery with novel joint mechanism,” IEEE Trans. Biomed Eng., vol. 60, no. 4, pp. 937–944, 2013.
[9] A. Nishikawa, T. Hosoi, K. Koara, D. Negoro, A. Hikita, S. Asano, H. Kakutani, F. Miyazaki, M. Sekimoto, M. Yasui, Y. Miyake, S. Takiguchi, and Monden, M. (2003). “FAce MOUSe: A novel human-machine interface for controlling the position of a laparoscope. Robotics and Automation”, IEEE Transactions on, 19(5), 825-841.
[10] R. Reilink, G. de Bruin, M. Franken, M. A. Mariani, S. Misra, and S. Stramigioli (2010, September). “Endoscopic camera control by head movements for thoracic surgery”. In Biomedical Robotics and Biomechatronics (BioRob), 2010 3rd IEEE RAS and EMBS International Conference on (pp. 510-515). IEEE.
[11] I. A. M. J. Broeders and J. Ruurda, “Robotics revolutionizing surgery: the Intuitive Surgical “Da Vinci” system” in Industrial Robot: An International Journal, vol. 28, 2001, pp. 387-391.
[12] S. Ortiz, et al. “Kinematic fundamentals of a biomechatronic laparoscopy system,” Int. J. Med. Robot. and Comput. Assist. Surg., vol. 7, no. 3, pp. 276–281, 2011.
[13] R. C. Luo, J. W. Chen, and Y. W. Perng, ”Robotic endoscope system with compli-ance effect including adaptive impedance and velocity control for assistive laparoscopic surgery,” in Proc. IEEE Int. Conf. Biomedical Robotics and Biomechatronics., 2010, pp. 100-105.
[14] R. J. Webster and B. A. Jones, 'Design and kinematic modeling of constant curva-ture continuum robots: A review,' The International Journal of Robotics Research, 2010.
[15] J. Jung, R. S. Penning, N. J. Ferrier, and M. R. Zinn, 'A modeling approach for continuum robotic manipulators: effects of nonlinear internal device friction,' in Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on, 2011, pp. 5139-5146.
[16] D. E. Meyer, J. E. Smith, S. Kornblum, R. A. Abrams, and C. E. Wright, “Optimal-ity in human motor performance: Ideal control of rapid aimed movements,” Psy-chological Review, pp. 340-370, 1988.
[17] M. E. Allaf, S. V. Jackman, P. G. Schulam, J. A. Cadeddu, B. R. Lee, R. G. Moore, L. R. Kavoussi, “Laparoscopic visual field Voice vs foot pedal interfaces for con-trol of the AESOP robot,” Surgical Endoscopy, vol.12, no.12, 1998, pp. 1415-1418.
[18] G. Wyeth, “Demonstrating the Safety and Performance of a Velocity Sourced Se-ries Elastic Actuator”, 2008 IEEE International Conference on Robotics and Au-tomation, Pasadena, CA, USA, May 19-23, 2008
[19] G. Wyeth and G. Walker,“ Assessing the Safety of a Velocity Sourced Series Elas-tic Actuator Using the Head Injury Criterion”, Australasian Conference on Robot-ics and Automation (ACRA 2007), Brisbane, Australia, December 2007
[20] G.Wyeth,“Control Issues for Velocity Sourced Series Elastic Actuators,” Australa-sian Conference on Robotics and Automation (ACRA 2006), Auckland, New Zea-land, December 2006.
[21] Y.J. Chu, S.P. Liu, R.C. Luo, R.H. Hu, C.C. Yeh, Y.W. Peng, P.L. Yen, “Dynamic tracking of anatomical object for a steerable endoscope” in IEEE/ASME Interna-tional Conference on Advanced Intelligent Mechatronics (AIM), 2012, pp. 45-50.
[22] S.D.P. Harker, “The development of ISO DIS 9241 Part 2: visual display terminals (VDTs) used for office tasks - ergonomic requirements - Part 2: Task requirements” in User Interfaces and Standardisation, 1989, pp. 2/1 - 2/8.
[23] R.C. Luo, Jui Wang, C. K. Chang and Y. W. Perng, “Surgeon’s Third Hand: An As-sistive Robot Endoscopic System with Intuitive Maneuverability for Laparoscopic Surgery” in Proc. IEEE Int. Conf. Biomedical Robotics and Biomechatronics (BioRob), 2014, pp. 138-143.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53719-
dc.description.abstract微創手術是外科手術中較具挑戰性的,現今的腹腔鏡手術,除了負責執行開刀動作的醫師之外,腹腔鏡的使用需要仰賴另一位助理醫生以手動的方式調整鏡頭位置,這就需要外科醫師和助手之間的培訓和高合作工作操作。因此,本研究的目的是開發一種腹腔鏡系統,希望可以讓主刀醫師親自以簡單、直覺的方式調整腹腔鏡的鏡頭位置。我們實做了機器人多關節可撓性腹腔鏡系統(RFLS),此系統由外科醫師的頭部動作控制,控制方式十分直觀,且外科醫師可以使用他/她的手操縱腹腔鏡器械。除了直觀地操縱腹腔鏡,可撓性腹腔鏡機器人系統最顯著優點是記憶位置的功能,只需簡單的命令就可使腹腔鏡回到已記憶的視野,而不須重新以頭部移動腹腔鏡位置。此外,頭部轉動角度相對於腹腔鏡轉動角度的比率是可調整的。此系統使外科醫師直覺性控制腹腔鏡,而不需要以傳統方式和助理溝通協調,提高了手術過程中的效率,也有節省醫療人力的附加價值。實驗結果表明,多關節可撓性腹腔鏡可以始終跟隨使用者的頭部轉動、記憶所需的位置並返回到的那些點。zh_TW
dc.description.abstractLaparoscopic surgery remains a challenging procedure because the laparoscope has to be operated by an assistant during surgery, which requires training and high coopera-tion work between the surgeon and assistants. Accordingly, the objective of this study is to develop a laparoscopic system providing intuitive maneuverability. We developed and implemented a Robotic Flexible Laparoscope System (RFLS) which is controlled by the surgeon’s head movements, so the surgeon can use his/her hands to manipulate the laparoscopic instruments while maneuvering the laparoscope intuitively. In addition, scalable ratio adjustment of head movement with respect to laparoscope movement is also included in our system. Furthermore, in maneuvering the laparoscope intuitively, the most significant advantage is the ability of RFLS can at least save three anatomical positions, which could be retrieved by a single command with small errors. This system makes surgeon-in-charge maneuver the laparoscope intuitively without communication and coordination with assistant needed in conventional way. As a result, it is expected to replace the assistant, thus reduce manpower and enhance the efficiency during the surgery. Experimental results demonstrate that the articulating flexible laparoscope can always follow user’s head motion, memorize the required points and return back to those points in all necessary orientations.en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:28:15Z (GMT). No. of bitstreams: 1
ntu-104-R02921009-1.pdf: 3074162 bytes, checksum: b3e8b8d8562b45528059500264ff5367 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
TABLE OF CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES xi
Chapter 1 Introduction 1
1.1 Introduction to Minimally Invasive Surgery 1
1.1.1 Minimally Invasive Surgery 1
1.1.2 Laparoscopic surgery 3
1.2 Motivation 5
1.3 Objective 6
1.4 Previous Study 7
1.4.1 Intuitive Manipulation 7
1.4.2 Robotic Endoscope System 8
1.5 Thesis Organization 8
Chapter 2 Research Materials 11
2.1 Hardware 11
2.1.1 Articulating Laparoscope 11
2.1.2 Wireless Gyroscope 12
2.1.3 Maxon® Motor and EPOS 24/1 Controller 12
2.1.4 Supportive Holder 14
2.2 Software 15
2.3 Mathematical Models of the Articulating Laparoscope 16
2.3.1 Kinematics Model 16
2.3.2 Inverse Kinematics model 17
Chapter 3 System Architecture 19
3.1 Robotic Flexible Laparoscope System 19
3.2 Overall System Design 20
3.3 Structure of Control System 24
3.4 Control Algorithm for 3-DOF Laparoscope 25
3.4.1 Adaptive Impedance Control 25
3.4.2 Torque 27
Chapter 4 Zoom In/Out Mechanism 29
4.1 Hardware and Mechanism 29
4.2 Zooming Mode 31
4.3 State Machine 35
Chapter 5 Ergonomic Functions and Their Algorithms 37
5.1 Singular Situation Elimination 37
5.2 Zero-Point-Correcting Algorithm 38
5.3 Protective Mechanism 38
5.4 Position Retrieving Ability 39
Chapter 6 Implementation and Realization 42
Chapter 7 Accuracy Analysis of the System Error 45
7.1 Experiment Procedure 45
7.2 Experimental results 46
7.3 Accuracy Analysis 50
Chapter 8 Experimental Results 54
8.1 Control the Laparoscope 54
8.1.1 Motor Controlled by Gyroscope 54
8.1.2 Laparoscope Controlled by Gyroscope 55
8.2 Zero Point Correcting Algorithm 57
8.3 Protective Mechanism 58
8.4 Position Retrieving Ability 59
Chapter 9 Evaluation Task 62
9.1 Setting and participants 62
9.2 Procedure 64
9.3 Results of evaluation tasks 64
Chapter 10 Discussion 66
10.1 Interviews with users 66
10.2 Evaluation task 66
10.3 Algorithm and limitations 67
Chapter 11 Conclusions and Contributions 68
Chapter 12 Future Works 69
REFERENCE 70
VITA 73
dc.language.isoen
dc.subject機器人多關節可撓性腹腔鏡系統zh_TW
dc.subject直覺控制zh_TW
dc.subject腹腔鏡手術zh_TW
dc.subject微創手術zh_TW
dc.subjectlaparoscopic procedureen
dc.subjectintuitive controlen
dc.subjectminimally invasive surgeryen
dc.subjectRobotic Laparoscope Systemen
dc.title智慧型可撓性機器人直覺式腹腔鏡控制系統於微創手術之應用zh_TW
dc.titleRobotic Flexible Laparoscope System with Intuitive Operation for Minimally Invasive Surgeryen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳金聖(Chin-Sheng Chen),顏炳郎(Ping-Lang Yen)
dc.subject.keyword微創手術,腹腔鏡手術,直覺控制,機器人多關節可撓性腹腔鏡系統,zh_TW
dc.subject.keywordminimally invasive surgery,laparoscopic procedure,intuitive control,Robotic Laparoscope System,en
dc.relation.page73
dc.rights.note有償授權
dc.date.accepted2015-08-03
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved