Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53712
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳光超
dc.contributor.authorYi-Ting Wangen
dc.contributor.author王怡婷zh_TW
dc.date.accessioned2021-06-16T02:28:07Z-
dc.date.available2020-08-31
dc.date.copyright2015-08-31
dc.date.issued2015
dc.date.submitted2015-08-03
dc.identifier.citationAbrahamsen, H., Stenmark, H., and Platta, H.W. (2012). Ubiquitination and phosphorylation of Beclin 1 and its binding partners: Tuning class III phosphatidylinositol 3-kinase activity and tumor suppression. FEBS letters 586, 1584-1591.
Badadani, M. (2012). Autophagy Mechanism, Regulation, Functions, and Disorders. ISRN Cell Biology 2012, 11.
Chen, Y., and Klionsky, D.J. (2011). The regulation of autophagy - unanswered questions. Journal of cell science 124, 161-170.
Chen, Z.J. (2005). Ubiquitin signalling in the NF-kappaB pathway. Nature cell biology 7, 758-765.
Cui, J., Gong, Z., and Shen, H.M. (2013). The role of autophagy in liver cancer: molecular mechanisms and potential therapeutic targets. Biochimica et biophysica acta 1836, 15-26.
Fader, C.M., and Colombo, M.I. (2009). Autophagy and multivesicular bodies: two closely related partners. Cell death and differentiation 16, 70-78.
Funderburk, S.F., Wang, Q.J., and Yue, Z. (2010). The Beclin 1-VPS34 complex--at the crossroads of autophagy and beyond. Trends in cell biology 20, 355-362.
Ganley, I.G., Lam du, H., Wang, J., Ding, X., Chen, S., and Jiang, X. (2009). ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. The Journal of biological chemistry 284, 12297-12305.
Guo, H., Chitiprolu, M., Gagnon, D., Meng, L., Perez-Iratxeta, C., Lagace, D., and Gibbings, D. (2014). Autophagy supports genomic stability by degrading retrotransposon RNA. Nature communications 5, 5276.
Hailey, D.W., Rambold, A.S., Satpute-Krishnan, P., Mitra, K., Sougrat, R., Kim, P.K., and Lippincott-Schwartz, J. (2010). Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141, 656-667.
Hamasaki, M., Furuta, N., Matsuda, A., Nezu, A., Yamamoto, A., Fujita, N., Oomori, H., Noda, T., Haraguchi, T., Hiraoka, Y., et al. (2013). Autophagosomes form at ER-mitochondria contact sites. Nature 495, 389-393.
He, C., and Klionsky, D.J. (2009). Regulation mechanisms and signaling pathways of autophagy. Annual review of genetics 43, 67-93.
He, S., Ni, D., Ma, B., Lee, J.H., Zhang, T., Ghozalli, I., Pirooz, S.D., Zhao, Z., Bharatham, N., Li, B., et al. (2013). PtdIns(3)P-bound UVRAG coordinates Golgi-ER retrograde and Atg9 transport by differential interactions with the ER tether and the beclin 1 complex. Nature cell biology 15, 1206-1219.
Inguscio, V., Panzarini, E., and Dini, L. (2012). Autophagy Contributes to the Death/Survival Balance in Cancer PhotoDynamic Therapy. Cells 1, 464-491.
Isakson, P., Lystad, A.H., Breen, K., Koster, G., Stenmark, H., and Simonsen, A. (2013). TRAF6 mediates ubiquitination of KIF23/MKLP1 and is required for midbody ring degradation by selective autophagy. Autophagy 9, 1955-1964.
Itakura, E., Kishi, C., Inoue, K., and Mizushima, N. (2008). Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Molecular biology of the cell 19, 5360-5372.
Juhasz, G., Hill, J.H., Yan, Y., Sass, M., Baehrecke, E.H., Backer, J.M., and Neufeld, T.P. (2008). The class III PI(3)K Vps34 promotes autophagy and endocytosis but not TOR signaling in Drosophila. The Journal of cell biology 181, 655-666.
Kametaka, S., Matsuura, A., Wada, Y., and Ohsumi, Y. (1996). Structural and functional analyses of APG5, a gene involved in autophagy in yeast. Gene 178, 139-143.
Kang, R., Zeh, H.J., Lotze, M.T., and Tang, D. (2011). The Beclin 1 network regulates autophagy and apoptosis. Cell death and differentiation 18, 571-580.
Kim, H.J., Zhong, Q., Sheng, Z.H., Yoshimori, T., Liang, C., and Jung, J.U. (2012). Beclin-1-interacting autophagy protein Atg14L targets the SNARE-associated protein Snapin to coordinate endocytic trafficking. Journal of cell science 125, 4740-4750.
Klionsky, D.J., and Emr, S.D. (2000). Autophagy as a regulated pathway of cellular degradation. Science 290, 1717-1721.
Kou, L., Sun, J., Zhai, Y., and He, Z. (2013). The endocytosis and intracellular fate of nanomedicines: Implication for rational design. Asian Journal of Pharmaceutical Sciences 8, 1-10.
Kroemer, G., Marino, G., and Levine, B. (2010). Autophagy and the integrated stress response. Molecular cell 40, 280-293.
Lamothe, B., Besse, A., Campos, A.D., Webster, W.K., Wu, H., and Darnay, B.G. (2007). Site-specific Lys-63-linked tumor necrosis factor receptor-associated factor 6 auto-ubiquitination is a critical determinant of I kappa B kinase activation. The Journal of biological chemistry 282, 4102-4112.
Lamothe, B., Campos, A.D., Webster, W.K., Gopinathan, A., Hur, L., and Darnay, B.G. (2008). The RING domain and first zinc finger of TRAF6 coordinate signaling by interleukin-1, lipopolysaccharide, and RANKL. The Journal of biological chemistry 283, 24871-24880.
Lemmon, S.K., and Traub, L.M. (2000). Sorting in the endosomal system in yeast and animal cells. Current opinion in cell biology 12, 457-466.
Leonard, D., Hayakawa, A., Lawe, D., Lambright, D., Bellve, K.D., Standley, C., Lifshitz, L.M., Fogarty, K.E., and Corvera, S. (2008). Sorting of EGF and transferrin at the plasma membrane and by cargo-specific signaling to EEA1-enriched endosomes. Journal of cell science 121, 3445-3458.
Mari, M., Griffith, J., Rieter, E., Krishnappa, L., Klionsky, D.J., and Reggiori, F. (2010). An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis. The Journal of cell biology 190, 1005-1022.
McKnight, N.C., and Zhenyu, Y. (2013). Beclin 1, an Essential Component and Master Regulator of PI3K-III in Health and Disease. Current pathobiology reports 1, 231-238.
Mizushima, N., and Komatsu, M. (2011). Autophagy: renovation of cells and tissues. Cell 147, 728-741.
Murata, H., Sakaguchi, M., Kataoka, K., and Huh, N.H. (2013). SARM1 and TRAF6 bind to and stabilize PINK1 on depolarized mitochondria. Molecular biology of the cell 24, 2772-2784.
Murrow, L., Malhotra, R., and Debnath, J. (2015). ATG12-ATG3 interacts with Alix to promote basal autophagic flux and late endosome function. Nature cell biology 17, 300-310.
Nazio, F., and Cecconi, F. (2013). mTOR, AMBRA1, and autophagy: an intricate relationship. Cell cycle 12, 2524-2525.
Nazio, F., Strappazzon, F., Antonioli, M., Bielli, P., Cianfanelli, V., Bordi, M., Gretzmeier, C., Dengjel, J., Piacentini, M., Fimia, G.M., et al. (2013). mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nature cell biology 15, 406-416.
Orsi, A., Razi, M., Dooley, H.C., Robinson, D., Weston, A.E., Collinson, L.M., and Tooze, S.A. (2012). Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy. Molecular biology of the cell 23, 1860-1873.
Paul, P.K., Bhatnagar, S., Mishra, V., Srivastava, S., Darnay, B.G., Choi, Y., and Kumar, A. (2012). The E3 ubiquitin ligase TRAF6 intercedes in starvation-induced skeletal muscle atrophy through multiple mechanisms. Molecular and cellular biology 32, 1248-1259.
Puri, C., Renna, M., Bento, C.F., Moreau, K., and Rubinsztein, D.C. (2013). Diverse autophagosome membrane sources coalesce in recycling endosomes. Cell 154, 1285-1299.
Ravikumar, B., Moreau, K., Jahreiss, L., Puri, C., and Rubinsztein, D.C. (2010a). Plasma membrane contributes to the formation of pre-autophagosomal structures. Nature cell biology 12, 747-757.
Ravikumar, B., Sarkar, S., Davies, J.E., Futter, M., Garcia-Arencibia, M., Green-Thompson, Z.W., Jimenez-Sanchez, M., Korolchuk, V.I., Lichtenberg, M., Luo, S., et al. (2010b). Regulation of mammalian autophagy in physiology and pathophysiology. Physiological reviews 90, 1383-1435.
Reggiori, F., and Tooze, S.A. (2012). Autophagy regulation through Atg9 traffic. The Journal of cell biology 198, 151-153.
Reggiori, F., Tucker, K.A., Stromhaug, P.E., and Klionsky, D.J. (2004). The Atg1-Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. Developmental cell 6, 79-90.
Rusten, T.E., and Stenmark, H. (2009). How do ESCRT proteins control autophagy? Journal of cell science 122, 2179-2183.
Saitoh, T., Fujita, N., Hayashi, T., Takahara, K., Satoh, T., Lee, H., Matsunaga, K., Kageyama, S., Omori, H., Noda, T., et al. (2009). Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proceedings of the National Academy of Sciences of the United States of America 106, 20842-20846.
Shen, H.M., and Pervaiz, S. (2006). TNF receptor superfamily-induced cell death: redox-dependent execution. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 20, 1589-1598.
Shi, C.S., and Kehrl, J.H. (2010). TRAF6 and A20 regulate lysine 63-linked ubiquitination of Beclin-1 to control TLR4-induced autophagy. Science signaling 3, ra42.
Shravage, B.V., Hill, J.H., Powers, C.M., Wu, L., and Baehrecke, E.H. (2013). Atg6 is required for multiple vesicle trafficking pathways and hematopoiesis in Drosophila. Development 140, 1321-1329.
Silke, J., and Brink, R. (2010). Regulation of TNFRSF and innate immune signalling complexes by TRAFs and cIAPs. Cell death and differentiation 17, 35-45.
Sun, L.L., Li, M., Suo, F., Liu, X.M., Shen, E.Z., Yang, B., Dong, M.Q., He, W.Z., and Du, L.L. (2013). Global analysis of fission yeast mating genes reveals new autophagy factors. PLoS genetics 9, e1003715.
Takahashi, Y., Coppola, D., Matsushita, N., Cualing, H.D., Sun, M., Sato, Y., Liang, C., Jung, J.U., Cheng, J.Q., Mule, J.J., et al. (2007). Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nature cell biology 9, 1142-1151.
Takahashi, Y., Meyerkord, C.L., Hori, T., Runkle, K., Fox, T.E., Kester, M., Loughran, T.P., and Wang, H.G. (2011). Bif-1 regulates Atg9 trafficking by mediating the fission of Golgi membranes during autophagy. Autophagy 7, 61-73.
Tang, H.W., and Chen, G.C. (2011). Unraveling the role of myosin in forming autophagosomes. Autophagy 7, 778-779.
Tang, H.W., Liao, H.M., Peng, W.H., Lin, H.R., Chen, C.H., and Chen, G.C. (2013). Atg9 interacts with dTRAF2/TRAF6 to regulate oxidative stress-induced JNK activation and autophagy induction. Developmental cell 27, 489-503.
van der Burgh, A. (2011). Atg9 cycling: The molecular mechanisms of anterograde and retrograde Atg9 trafficking.
Webber, J.L., and Tooze, S.A. (2010a). Coordinated regulation of autophagy by p38alpha MAPK through mAtg9 and p38IP. The EMBO journal 29, 27-40.
Webber, J.L., and Tooze, S.A. (2010b). New insights into the function of Atg9. FEBS letters 584, 1319-1326.
Wei, Y., Pattingre, S., Sinha, S., Bassik, M., and Levine, B. (2008). JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Molecular cell 30, 678-688.
Wirawan, E., Lippens, S., Vanden Berghe, T., Romagnoli, A., Fimia, G.M., Piacentini, M., and Vandenabeele, P. (2012). Beclin1: a role in membrane dynamics and beyond. Autophagy 8, 6-17.
Yamamoto, H., Kakuta, S., Watanabe, T.M., Kitamura, A., Sekito, T., Kondo-Kakuta, C., Ichikawa, R., Kinjo, M., and Ohsumi, Y. (2012). Atg9 vesicles are an important membrane source during early steps of autophagosome formation. The Journal of cell biology 198, 219-233.
Yang, J., Chen, D., He, Y., Melendez, A., Feng, Z., Hong, Q., Bai, X., Li, Q., Cai, G., Wang, J., et al. (2013). MiR-34 modulates Caenorhabditis elegans lifespan via repressing the autophagy gene atg9. Age 35, 11-22.
Young, A.R., Chan, E.Y., Hu, X.W., Kochl, R., Crawshaw, S.G., High, S., Hailey, D.W., Lippincott-Schwartz, J., and Tooze, S.A. (2006). Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. Journal of cell science 119, 3888-3900.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53712-
dc.description.abstract細胞自噬(Autophagy)作用是真核生物演化上高度保留的代謝途徑。當細胞面對飢餓、缺氧與氧化等壓力時,細胞自噬反應透過溶酶體(lysosome)降解細胞內不需要、堆疊之蛋白質與老化、損壞的胞器等以維持細胞內之平衡。Atg9是目前所有細胞自噬相關蛋白中唯一的穿膜蛋白,其在細胞自噬反應中扮演攜帶、提供磷脂雙層膜的角色。在實驗室先前研究中,發現Atg9和TRAF6的交互作用可活化氧化物壓力所引誘之JNK活性及細胞自噬。TRAF6也可透過調節Beclin 1 泛素化(ubiquitination)引起細胞自噬反應。然而Atg9、TRAF6和Beclin 1之間的關係到目前仍然不清楚。在本研究中,我們發現Atg9和Beclin 1有交互作用,且此交互作用在有TRAF6存在的情況下會變得更強烈。Beclin 1會和PI3K/Vps34結合並調控細胞自噬與胞吞作用(endcytosis)。在本研究中,我們發現細胞在沒有Atg9或TRAF6的情況下,和細胞沒有Beclin 1 的情況相同都會使EGFR的降解作用會降低。因此我們認為Atg9和TRAF6和 Beclin 1一樣都可參與胞吞作用的調節。我們將再進一步探討 TRAF6-mAtg9-Beclin 1在細胞自噬與胞吞作用中的分子機制。zh_TW
dc.description.abstractAutophagy is a highly conserved and tightly regulated catabolic process that digests and recycles cellular components such as aggregated proteins or damaged organells through lysosomes in response to environmental stresses. Atg9 is the only known transmembrane protein among autophagy-related proteins and thought to act as a lipid carrier during autophagosome formation. Our recent work showed that Atg9 interacts with TRAF6 to regulate oxidative stress-induced JNK signaling and autophagy induction. TRAF6 has been shown to regulate lysine 63-linked ubiquitination of Beclin1 to induce autophagy. However, the relationship between Atg9, and the interaction is enhanced when TRAF6 is overexpressed. However, TRAF6-mediated Beclin 1 ubiquitination is not responsible of the enhanced interaction between Atg9 and Beclin 1. It has been shown that Beclin1- PI3K/Vps34 complex regulates autophagy as well as endocytosis. We found that depletion of Atg9 or TRAF6 attenuates EGFR degradation, suggesting that like Beclin 1, Atg9 and TRAF6 also plays a role in endocytic trafficking. We will further investigate the molecular mechanisms underlie TRAF6-Atg9-Beclin 1-mediated autophagy and endocytosis.en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:28:07Z (GMT). No. of bitstreams: 1
ntu-104-R02b46011-1.pdf: 5682139 bytes, checksum: 2c40daf650ec823d053423c9ec70c83f (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents中文摘要 1
ABSTRAT 2
INTRUDUCTION 3
1. Overview of Autophagy 3
2. The machinery of Autophagy 4
(1) The Atg1/ULK1 protein kinase complex 5
(2) Becln1-class III PI3K complex 5
(3) Two ubiquitin-like conjugation systems 7
(4) Atg9 and other autophagy related proteins 8
3. TNF receptor-associated factor 6 (TRAF6) 11
4. Endocytosis and autophagy 14
MATERIALS AND METHODS 17
RESULT 23
1. Atg9 interacts with Beclin1 through Beclin 1 23
2. The interaction of Atg9 and Beclin 1 is enhanced in the early stage of autophagy 24
3. TRAF6 regulates Atg9-Beclin 1 interaction 25
4. The catalytic activity of TRAF6 is required for the interaction between Ag9 and Beclin 1 26
5. Beclin 1 KR mutant interacts with Atg9 27
6. TRAF6 regulates Atg9 ubiquitination 28
7. Beclin1, Atg9 or TRAF6 regulate endocytic trafficking 29
DISCUSSION 32
REFERENCES 35
FIGURES 40
dc.language.isozh-TW
dc.title探討Atg9蛋白在細胞自噬及胞吞作用之分子機轉與功能zh_TW
dc.titleMolecular characterization and functional analysis
of Atg9 in autophagy and endocytosis.
en
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳瑞華,楊維元
dc.subject.keyword細胞自噬,胞吞作用,Atg9,Beclin 1,TRAF6,zh_TW
dc.subject.keywordAutophagy,Endocytosis,Atg9,Beclin 1,TRAF6,en
dc.relation.page54
dc.rights.note有償授權
dc.date.accepted2015-08-03
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
5.55 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved