Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53706
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鍾孫霖(Sun-Lin Chung)
dc.contributor.authorTse-Ning Huangen
dc.contributor.author黃則寧zh_TW
dc.date.accessioned2021-06-16T02:27:59Z-
dc.date.available2025-08-10
dc.date.copyright2020-08-25
dc.date.issued2020
dc.date.submitted2020-08-11
dc.identifier.citationAdvokaat, E.L., Hall, R., White, L.T., Armstrong, R., Kohn, B. and BouDagher-Fadel, M.K., 2014, Neogene extension and exhumation in NW Sulawesi. AGU Fall Meeting, T43A-4701.
Advokaat, E.L., Hall, R., White, L.T., Watkinson, I.M., Rudyawan, A. and BouDagher- Fadel, M.K., 2017, Miocene to recent extension in NW Sulawesi, Indonesia. Journal of Asian Earth Sciences, 147: 378-401.
Ahlburg, J., 1913, Versuch einer geologischen darstellung der Insel Celebes.
Allègre, C.J., 1982, Chemical geodynamics. Tectonophysics, 81: 109-132.
Andersen, T., 2002, Correction of common lead in U–Pb analyses that do not report 204Pb. Chemical Geology, 192: 59-79.
Ayers, J.C. and Watson, E.B., 1993, Rutile solubility and mobility in supercritical aqueous fluids. Contributions to Mineralogy and Petrology, 114: 321-330.
Bas, M.L., Maitre, R.L., Streckeisen, A., Zanettin, B. and Rocks, I.S.o.t.S.o.I., 1986, A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27: 745-750.
Beaudouin, T., Bellier, O. and Sebrier, M., 2003, Present-day stress and deformation field within the Sulawesi Island area (Indonesia) : geodynamic implications. Bulletin de la Société Géologique de France, 174: 305-317.
Bergman, S.C., Coffield, D.Q., Talbot, J.P. and Garrard, R.A., 1996, Tertiary tectonic and magmatic evolution of western Sulawesi and the Makassar Strait, Indonesia: evidence for a Miocene continent-continent collision. Geological Society, London, Special Publications, 106: 391-429.
Brouwer, H.A., 1934, Geologische onderzoekingen op het eiland Celebes. Kolonien Geologisch-Mijn-bouwkundig Genootschap, Geology Series, 10: 39-218.
Bouvier, A., Vervoort, J.D. and Patchett, P.J., 2008, The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273: 48-57.
Chappell, B.W., 1974, Two contrasting granite types. Pacif. Geol., 8: 173-174.
Charlton, T., 2000, Tertiary evolution of the eastern Indonesia collision complex. Journal of Asian Earth Sciences, 18: 603-631.
Chauvel, C., Marini, J.C., Plank, T. and Ludden, J.N., 2009, Hf-Nd input flux in the Izu- Mariana subduction zone and recycling of subducted material in the mantle. Geochemistry, Geophysics, Geosystems, 10.
Chiu, H.-Y., Chung, S.L., Wu, F.Y., Liu, D., Liang, Y.-H., Lin, I.J., Iizuka, Y., Xie, L.-W., Wang, Y. and Chu, M.-F., 2009, Zircon U–Pb and Hf isotopic constraints from eastern Transhimalayan batholiths on the precollisional magmatic and tectonic evolution in southern Tibet. Tectonophysics, 477: 3-19.
Brenan, J., Shaw, H., Phinney, D. and Ryerson, F., 1994, Rutile-aqueous fluid partitioning of Nb, Ta, Hf, Zr, U and Th: implications for high field strength element depletions in island-arc basalts. Earth and Planetary Science Letters, 128: 327-339.
Cliff, R.A., 1985, Isotopic dating in metamorphic belts. Journal of the Geological Society, 142: 97-110.
Dupuy, C. and Dostal, J., 1978, Geochemistry of calc-alkaline volcanic rocks from southeastern Iran (kouh-e-shahsavaran). Journal of Volcanology and Geothermal Research, 4: 363-373.
Elburg, M., van Leeuwen, T. and Foden, J., 2003, Spatial and temporal isotopic domains of contrasting igneous suites in western and northern Sulawesi, Indonesia. Chemical Geology, 199: 243-276.
Gill, R. (2010). Igneous rocks and processes: a practical guide. John Wiley and Sons.
Gómez, J.M., Madariaga, R., Walpersdorf, A. and Chalard, E., 2000, The 1996 Earthquakes in Sulawesi, Indonesia. Bulletin of the Seismological Society of America, 90: 739-751.
Griffin, W.L., Pearson, N.J., Belousova, E., Jackson, S.E., van Achterbergh, E., O’Reilly, S.Y. and Shee, S.R., 2000, The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64: 133-147.
Hall, R., 1996, Reconstructing Cenozoic SE Asia. Geological Society, London, Special Publications, 106: 153-184.
Hall, R. and Wilson, M.E.J., 2000, Neogene sutures in eastern Indonesia. Journal of Asian Earth Sciences, 18: 781-808.
Hall, R., 2002, Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. Journal of Asian Earth Sciences, 20: 353-431.
Hall, R. and Sevastjanova, I., 2012, Australian crust in Indonesia. Australian Journal of Earth Sciences, 59: 827-844.
Hall, R. and Spakman, W., 2015, Mantle structure and tectonic history of SE Asia. Tectonophysics, 658: 14-45.
Hall, R., 2017, Southeast Asia: new views of the geology of the Malay Archipelago. Annual Review of Earth and Planetary Sciences, 45: 331-358.
Hall, R., 2019, The subduction initiation stage of the Wilson cycle. Geological Society, London, Special Publications, 470: 415-437.
Hamilton, W., 1976, Subduction in the Indonesian region. USGS Profess Paper, 1078: 345
Hamilton, W., 1979, Tectonics ofthe Indonesian region, U. S. Geol. Surv.
Harker, A., 2011, The Natural History of Igneous Rocks. Cambridge University Press, Cambridge
Harris, R., 1992, Peri-collisional extension and the formation of Oman-type ophiolites in the Banda Arc and Brooks Range. Geological Society, London, Special Publications, 60: 301-325.
Harris, R., 2003, Geodynamic patterns of ophiolites and marginal basins in the Indonesian and New Guinea regions. Geological Society, London, Special Publications, 218: 481-505.
Harris, R., 2006, Rise and fall of the Eastern Great Indonesian arc recorded by the assembly, dispersion and accretion of the Banda Terrane, Timor. Gondwana Research, 10: 207-231.
Hastie, A.R., Kerr, A.C., Pearce, J.A. and Mitchell, S.F., 2007, Classification of Altered Volcanic Island Arc Rocks using Immobile Trace Elements: Development of the Th–Co Discrimination Diagram. Journal of Petrology, 48: 2341-2357.
Helmers, H., Sopaheluwakan, J., Nila, E.S. and Tjokrosapoetro, S., 1989, Blueschist evolution is Southeast Sulawesi, Indonesia. Netherlands Journal of Sea Research, 24: 373-381.
Hennig, J., Hall, R. and Armstrong, R.A., 2016, U-Pb zircon geochronology of rocks from west Central Sulawesi, Indonesia: Extension-related metamorphism and magmatism during the early stages of mountain building. Gondwana Research, 32: 41-63.
Hennig, J., Hall, R., Forster, M.A., Kohn, B.P. and Lister, G.S., 2017, Rapid cooling and
exhumation as a consequence of extension and crustal thinning: Inferences from the Late Miocene to Pliocene Palu Metamorphic Complex, Sulawesi, Indonesia. Tectonophysics, 712-713: 600-622.
Hiess, J., Condon, D.J., McLean, N. and Noble, S.R., 2012,238U/235U Systematics in Terrestrial UraniumBearing Minerals. Science, 335, 1610-1614, doi: 10.1126/science.1215507.
Hinschberger, F., Malod, J.A., Réhault, J.P., Dyment, J., Honthaas, C., Villeneuve, M. and Burhanuddin, S., 2000, Origine et évolution du bassin Nord-Banda (Indonésie) : apport des données magnétiques. Comptes Rendus de l'Académie des Sciences - Series IIA - Earth and Planetary Science, 331: 507-514.
Hinschberger, F., Malod, J.A., Dyment, J., Honthaas, C., Réhault, J.P. and Burhanuddin, S., 2001, Magnetic lineations constraints for the back-arc opening of the Late Neogene South Banda Basin (eastern Indonesia). Tectonophysics, 333: 47-59.
Hiess, J., Condon, D.J., McLean, N. and Noble, S.R., 2012, 238U/235U systematics in terrestrial uranium-bearing minerals. Science, 335: 1610-1614.
Hoskin, P.W.O. and Schaltegger, U., 2003, The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53: 27-62.
Hu, F., Ducea, M.N., Liu, S. and Chapman, J.B., 2017, Quantifying Crustal Thickness in Continental Collisional Belts: Global Perspective and a Geologic Application. Scientific Reports, 7: 7058.
Irvine, T.N. and Baragar, W.R.A., 1971, A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian journal of earth sciences, 8: 523.
Jablonski, D., Priyono, R., Westlake, S., Larsen, O.A., 2007,Geology and explorationpotential of the Gorontalo Basin, Central Indonesia - eastern extension of the NorthMakassar Basin? In: Indonesian Petroleum Association, Proceedings 31st AnnualConvention, pp. 197–224
Jaffey, A.H., Flynn, K.F., Glendenin, L.E., Bentley, W.C. and Essling, A.M., 1971, Precision Measurement of Half-Lives and Specific Activities of 235U and 238U. Physical Review C, 4: 1889-1906.
Jochum, K.P., Weis, U., Schwager, B., Stoll, B., Wilson, S.A., Haug, G.H., Andreae, M.O. and Enzweiler, J., 2016, Reference Values Following ISO Guidelines for Frequently Requested Rock Reference Materials. Geostandards and Geoanalytical Research, 40: 333-350.
Kadarusman, A., Miyashita, S., Maruyama, S., Parkinson, C.D. and Ishikawa, A., 2004, Petrology, geochemistry and paleogeographic reconstruction of the East Sulawesi Ophiolite, Indonesia. Tectonophysics, 392: 55-83.
Kadarusman, A., Van, L. and Sopaheluwakan, J., Year, Eclogite, peridotite, granulite and associated high-grade rocks from The Palu region, Central Sulawesi, Indonesia: An example for mantle and crust interactions in young orogenic belt. Proceedings JCM Makassar 2011, The 36th HAGI and 40th IAGI Annual Convention and Exhibition
Kavalieris, I., Walshe, J., Halley, S. and Harrold, B., 1990, Dome-related gold mineralization in the Pani volcanic complex, North Sulawesi, Indonesia; a study of geologic relations, fluid inclusions, and chlorite compositions. Economic Geology, 85: 1208-1225.
Kavalieris, I., van Leeuwen, T.M. and Wilson, M., 1992, Geological setting and styles of mineralization, north arm of Sulawesi, Indonesia. Journal of Southeast Asian Earth Sciences, 7: 113-129.
Kinny, P.D. and Maas, R., 2003, Lu–Hf and Sm–Nd isotope systems in zircon. Reviews in Mineralogy and Geochemistry, 53: 327-341.
Lechler, P.J. and Desilets, M.O., 1987, A review of the use of loss on ignition as a measurement of total volatiles in whole-rock analysis. Chemical Geology, 63: 341-344.
Loubet, M., Shimizu, N. and Allègre, C.J., 1975, Rare earth elements in alpine peridotites. Contributions to Mineralogy and Petrology, 53: 1.
Lowder, G. and Dow, J.A., 1978, Geology and exploration of porphyry copper deposits in North Sulawesi, Indonesia. Economic Geology, 73: 628-644.
Mamani, M., Tassara, A., and Wörner, G., 2008, Composition and structural control of crustal domains in the central Andes. Geochemistry, Geophysics, Geosystems, 9(3).
Mamani, M., Wörner, G., and Sempere, T., 2010, Geochemical variations in igneous rocks of the Central Andean orocline (13 S to 18 S): Tracing crustal thickening and magma generation through time and space. Bulletin, 122(1-2), 162-182.
Maniar, P.D. and Piccoli, P.M., 1989, Tectonic discrimination of granitoids. GSA Bulletin, 101: 635-643.
Marks, K., 2019, The IHO-IOC GEBCO Cook Book.
Matzen, A.K., Baker, M.B., Beckett, J.R. and Stolper, E.M., 2011, Fe–Mg partitioning between olivine and high-magnesian melts and the nature of Hawaiian parental liquids. Journal of Petrology, 52: 1243-1263.
Maulana, A., Imai, A., van Leeuwen, T., Watanabe, K., Yonezu, K., Nakano, T., Boyce, A., Page, L. and Schersten, A., 2016, Origin and geodynamic setting of Late Cenozoic granitoids in Sulawesi, Indonesia. Journal of Asian Earth Sciences, 124: 102-125.
Milsom, J., 2001, Subduction in eastern Indonesia: how many slabs? Tectonophysics, 338: 167-178.
Monnier, C., Girardeau, J., Maury, R.C. and Cotten, J., 1995, Back-arc basin origin for the East Sulawesi ophiolite (eastern Indonesia). Geology, 23: 851-854.
Moore, G., Kadarisman, D., Evans, C. and Hawkins, J., 1981, Geology of the Talaud islands, Molucca sea collision zone, northeast Indonesia. Journal of Structural Geology, 3: 467-475.
Mubroto, B., Briden, J., McClelland, E. and Hall, R., 1994, Palaeomagnetism of the Balantak ophiolite, Sulawesi. Earth and Planetary Science Letters, 125: 193-209.
Nielsen, S.G. and Marschall, H.R., 2017, Geochemical evidence for mélange melting in global arcs. Science Advances, 3: e1602402.
Packham, G., 1996, Cenozoic SE Asia: reconstructing its aggregation and reorganization. Geological Society, London, Special Publications, 106: 123-152.
Parkinson, C.D., 1991, The Petrology, Structure and Geologic History of the Metamorphic rocks of Central Sulawesi, Indonesia. PhD thesis, University of London.
Parkinson, C.D., 1998, Emplacement of the East Sulawesi Ophiolite: evidence from subophiolite metamorphic rocks. Journal of Asian Earth Sciences, 16: 13-28.
Pearce, J.A., 1982, Trace element characteristics of lavas from destructive plate boundaries. Andesites: 525-548.
Pearce, J.A., 1983, The role of sub-continental lithosphere in magma genesis at destructive plate margins. Continental basalts and mantle xenoliths: 230-249.
Pearce, J. A., Baker, P. E., Harvey, P. K., and Luff, I. W., 1995, Geochemical evidence for subduction fluxes, mantle melting and fractional crystallization beneath the South Sandwich island arc. Journal of Petrology, 36(4), 1073-1109.
Pearce, J.A., 2008, Geochemical fingerprinting of oceanic basalts with applications to
ophiolite classification and the search for Archean oceanic crust. Lithos, 100: 14- 48.
Pearson, D. and Caira, N., 1999, Geology and metallogeny of central north Sulawesi. PACRIM'99 Congress, Australian Institute of Mining and Metallurgy, 311-326.
Perelló, J., 1994, Geology, porphyry Cu-Au, and epithermal Cu-Au-Ag mineralization of the Tombulilato district, North Sulawesi, Indonesia. Journal of Geochemical Exploration, 50: 221-256.
Pezzati, G., Hall, R., Buygress, P. and Perez-Gussinye, M., 2014, The Poso Basin in Gorontalo Bay, Sulawesi: extension related to core complex formation on land. In: Proceedings of the Indonesian Petroleum Association, 38th Annual Convention, Indonesian Petroleum Association, Jakarta, Indonesia, IPA14-G-297 1-12.
Pholbud, P., Hall, R., Advokaat, E., Burgress, P. and Rudyawan, A., 2012, A new interpretation of Gorontalo Bay, Sulawesi. In: Proceedings of the Indonesian Petroleum Association, 36th Annual Convention, Indonesian Petroleum Association, Jakarta, Indonesia, IPA12-G-039 1-23.
Pitcher, W.S., 1997, The Nature and Origin of Granite. Springer Netherlands
Polvé, M., Maury, R., Bellon, H., Rangin, C., Priadi, B., Yuwono, S., Joron, J. and Atmadja, R.S., 1997, Magmatic evolution of Sulawesi (Indonesia): constraints on the Cenozoic geodynamic history of the Sundaland active margin. Tectonophysics, 272: 69-92.
Profeta, L., Ducea, M.N., Chapman, J.B., Paterson, S.R., Gonzales, S.M.H., Kirsch, M., Petrescu, L. and DeCelles, P.G., 2015, Quantifying crustal thickness over time in magmatic arcs. Scientific Reports, 5: 17786.
Rangin, C., Jolivet, L. and Pubellier, M., 1990, A simple model for the tectonic evolution of southeast Asia and Indonesia region for the past 43 my. Bulletin de la Société Géologique de France, 6: 889-905.
Rangin, C., Maury, R.C., Polvé, M., Bellon, H., Priadi, B., Soeria-Atmadja, R., Cotten, J. and Joron, J.-L., 1997, Eocene to Miocene back-arc basin basalts and associated island arc tholeiites from northern Sulawesi (Indonesia): implications for the geodynamic evolution of the Celebes basin. Bulletin de la Société Géologique de France, 168: 627-636.
Rickwood, P.C., 1989, Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22: 247-263.
Roeder, P. and Emslie, R., 1970, Olivine-liquid equilibrium. Contributions to Mineralogy and Petrology, 29: 275-289.
Rudyawan, A., Hall, R. and White, L., 2014, Neogene extension of the central north Arm of Sulawesi, Indonesia. American Geophysical Union, Fall Meeting.
Ryerson, F.J. and Watson, E., 1987, Rutile saturation in magmas: implications for TiNbTa depletion in island-arc basalts. Earth and Planetary Science Letters, 86: 225-239.
Schindlbeck, J. C., Kutterolf, S., Straub, S. M., Andrews, G. D., Wang, K. L., and Mleneck‐ Vautravers, M. J., 2018, One Million Years tephra record at IODP S ites U 1436 and U 1437: I nsights into explosive volcanism from the J apan and I zu arcs. Island Arc, 27(3), e12244.
Silver, E.A., McCaffrey, R. and Smith, R.B., 1983, Collision, rotation, and the initiation of subduction in the evolution of Sulawesi, Indonesia. Journal of Geophysical Research: Solid Earth, 88: 9407-9418.
Simandjuntak, T., Situmorang, R. and Hadiwijoyo, S., 1987, Geologic map of the Batui Quadrangle, Sulawesi. 1: 250,000. Geological Research and Development Centre Indonesia.
Sláma, J., Košler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M.N. and Whitehouse, M.J., 2008, Plešovice zircon - A new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology, 249: 1-35.
Socquet, A., Simons, W., Vigny, C., McCaffrey, R., Subarya, C., Sarsito, D., Ambrosius, B. and Spakman, W., 2006, Microblock rotations and fault coupling in SE Asia triple junction (Sulawesi, Indonesia) from GPS and earthquake slip vector data. Journal of Geophysical Research: Solid Earth, 111.
Söderlund, U., Patchett, P.J., Vervoort, J.D. and Isachsen, C.E., 2004, The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219: 311-324.
Spakman, W. and Hall, R., 2010, Surface deformation and slab–mantle interaction during Banda arc subduction rollback. Nature Geoscience, 3: 562-566.
Sun, S.S. and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42: 313-345.
Surmont, J., Laj, C., Kissel, C., Rangin, C., Bellon, H. and Priadi, B., 1994, New paleomagnetic constraints on the Cenozoic tectonic evolution of the North Arm of Sulawesi, Indonesia. E and PSL, 121: 629-638.
Tachikawa, T., Hato, M., Kaku, M. and Iwasaki, A., 2011, Characteristics of ASTER GDEM version 2. 2011 IEEE international geoscience and remote sensing symposium, 3657-3660.
Taylor, D. and Leeuwen, v., 1980, Porphyry-type deposits in Southeast Asia.
Toplis, M., 2005, The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems. Contributions to Mineralogy and Petrology, 149: 22-39.
Trail, D.S., Bird, M.C., Obiab, R.C., Parwoto, Pertzel, B.A., 1972. Progress report Block 2,Sulawesi Utara, Idonesia. PT Tropical Endeavour Indonesia.
Trail, D.S., John, T.V., Bird, M.C., Obial, R.C., Pertzel, D.A., Abiog, D.B., Parwoto,Subiago, 1974. The general geological survey of block II, Sulawesi Utara, Indonesia.PT Tropical Endeavour Indonesia.
van Leeuwen, T., Allen, C.M., Elburg, M., Massonne, H.-J., Palin, J.M. and Hennig, J., 2016, The Palu Metamorphic Complex, NW Sulawesi, Indonesia: Origin and evolution of a young metamorphic terrane with links to Gondwana and Sundaland. Journal of Asian Earth Sciences, 115: 133-152.
van Leeuwen, T., Allen, C.M., Kadarusman, A., Elburg, M. and Palin, J.M., 2007, Petrologic, isotopic, and radiometric age constraints on the origin and tectonic history of the Malino Metamorphic Complex, NW Sulawesi, Indonesia. Journal of Asian Earth Sciences, 29: 751-777.
van Leeuwen, T.M., 2005, Stratigraphy and tectonic setting of the Cretaceous and Paleogene volcanic-sedimentary successions in northwest Sulawesi, Indonesia: implications for the Cenozoic evolution of Western and Northern Sulawesi. Journal of Asian Earth Sciences, 25: 481-511.
Vernon, R. and Collins, W., 2011, Structural criteria for identifying granitic cumulates. The Journal of Geology, 119: 127-142.
Vervoort, J.D., Plank, T. and Prytulak, J., 2011, The Hf–Nd isotopic composition of marine sediments. Geochimica et Cosmochimica Acta, 75: 5903-5926.
Vigny, C., Perfettini, H., Walpersdorf, A., Lemoine, A., Simons, W., van Loon, D., Ambrosius, B., Stevens, C., McCaffrey, R., Morgan, P., Bock, Y., Subarya, C.,
Manurung, P., Kahar, J., Abidin, H.Z. and Abu, S.H., 2002, Migration of seismicity and earthquake interactions monitored by GPS in SE Asia triple junction: Sulawesi, Indonesia. Journal of Geophysical Research: Solid Earth, 107: ETG 7-1-ETG 7-11.
Walpersdorf, A., Vigny, C., Subarya, C. and Manurung, P., 1998a, Monitoring of the Palu- Koro fault (Sulawesi) by GPS. Geophysical Research Letters, 25: 2313-2316.
Walpersdorf, A., Vigny, C., Manurung, P., Subarya, C. and Sutisna, S., 1998b, Determining the Sula block kinematics in the triple junction area in Indonesia by GPS. Geophysical Journal International, 135: 351-361.
Weissel, J.K., 1980, Evidence for Eocene oceanic crust in the Celebes Basin. GMS, 23: 37-47.
Wetherill, G.W., 1956, Discordant uranium-lead ages, I. Transactions, American Geophysical Union, 37: 320.
Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W.L., Meier, M., Obeli, F., Quadt, A.V., Roddick, J.C. and Spiegel, W., 1995, Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards Newsletter, 19: 1-23.
Wilson, M., 1989, Reviewofigneouspetrognesis: a global tectonicapproach. Terra Nova, 1: 218-222.
Wörner G., Harmon R. S., Davidson J. P., Moorbath S, Turner D. L., McMillan N.J., Nye C., Lopez-Escobar L., Moreno H., 1988, The Nevados de Payachata volcanic region (18°S/69°W, N. Chile) I. Geological, geochemical, and isotopic observations. Bull volcano 50: 287-303
Wu, F.-Y., Yang, Y.-H., Xie, L.-W., Yang, J.-H. and Xu, P., 2006, Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology. Chemical Geology, 234: 105-126.
Zhai, Q.-g., Jahn, B.-m., Su, L., Wang, J., Mo, X.-X., Lee, H.-y., Wang, K.-l. and Tang, S., 2013, Triassic arc magmatism in the Qiangtang area, northern Tibet: Zircon U–Pb ages, geochemical and Sr–Nd–Hf isotopic characteristics, and tectonic implications. Journal of Asian Earth Sciences, 63: 162-178.
李献华, 李武显, 李正祥, 2007, 再论南岭燕山早期花岗岩的成因类型与构造意义. Chinese Science Bulletin, 52: 981.
宋彪, 张玉海, 万渝生, 簡平, 2002, 锆石SHRIMP 样品靶制作、年龄测定及有关现象讨论.地质论评, (S1):26-30.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53706-
dc.description.abstract蘇拉威西位在歐亞板塊、菲律賓海板塊與澳洲板塊之間,由於板塊間的相對運動造就了複雜的地體構造,本研究透過鋯石鈾鉛定年、鋯石鉿同位素以及全岩主量及微量元素分析,來探索該地區的岩漿與構造的演化。分析結果顯示北蘇拉威西的岩漿活動分為主要的三期、五群,依序為:(1) 始新世至漸新世的拉斑質岩、(2a) 漸新世至中中新世的基性鈣鹼性岩、(2b) 漸新世至中中新世的酸性鈣鹼性岩(30-15 Ma)、(3a) 中中新世至上新世的中鉀鈣鹼性岩(10-4 Ma)以及 (3b) 晚中新世的高鉀鈣鹼性岩(7-5 Ma),其中的第二期與第三期分別是依據岩性與鉿同位素的差異細分。
始新世至漸新世的拉斑質岩主要為玄武岩至玄武質安山岩,具有近似於N型中洋脊玄武岩(N-MORB)的稀土元素特徵((La/Yb)CN =0.5-0.8, CN:對C1 球粒隕石值標準化),在蛛網圖當中呈現輕微的大離子親石元素富集與高場力鍵結元素的虧損,漸新世至中中新世屬於雙峰式的鈣鹼性岩,其中的基性岩(SiO2=50-55 wt.%)主要由玄武岩構成,酸性岩(SiO2=65-88 wt.%)則以I型花崗岩為主,基性岩於稀土元素圖解中呈現輕稀土元素較重稀土元素些微富集的分佈((La/Yb)CN =1.6-2.2),在蛛網圖當中亦呈現中至強的大離子親石元素富集和高場力鍵結元素虧損的特徵,至於第二期的酸性鈣鹼性岩與第三期的鈣鹼性中酸性岩(閃長岩、安山岩與英安岩),同樣大多都具有高的大離子親石元素富集以及強的高場力鍵結元素的虧損。
在漸新世至中中新世鈣鹼性岩中的岩漿鋯石具有近於虧損地函的εHf(t)值(+14.4-+17.1)和低鈾含量(128-374 ppm),中中新世至上新世的中鉀鈣鹼性岩的岩漿鋯石同樣也具有近於虧損地函的εHf(t)值(+14.6-+15.6)和低鈾含量(125-234 ppm),然而晚中新世的高鉀鈣鹼性岩卻具有明顯偏低的εHf(t)值(-2.5-+1.7)與高的鋯石鈾濃度(1058-1365 ppm),並伴隨大量的繼承鋯石。
三期火成岩都具有隱沒相關的地化特徵,指示它們皆與隱沒作用存在直接或間接的關係。本研究推斷始新世至漸新世的岩漿活動是生成於洋弧相關的環境;漸新世至中中新世的岩石由其雙峰式岩性分佈的特徵指示了伸張環境下生成的可能,其中的基性岩可能是上湧的地函岩漿演化產物,而酸性岩則可能屬於下部地殼重熔的產物;晚中新世的高鉀岩石有別於第二期,具有顯著偏低的εHf(t)值指示了較老地殼物質的參與,依據其地化特徵上的高度不均質性、缺乏基性岩等,排除了單純由隱沒作用生成的推論。
zh_TW
dc.description.abstractSulawesi is located at the junction of three major plates, namely, Eurasia, Australia and Philippine Sea, which underwent complex interactions in the Cenozoic.This study reports for the zircon U-Pb age and Hf isotope data of magmatic rocks from Northern Sulawesi. These, together with whole-rock geochemical analyses, are used to explore the magmatic and tectonic evolution in the region. The results indicate that there are 3 main stages of magmatism, with stage two and stage three can be further divided into two sub-groups based on different geochemical characteristics, respectively: (1) Eocene to Oligocene tholeiitic (TH) rocks, (2a) Oligocene to Miocene basic calc-alkaline (BCA) rocks, (2b) 30-15 Ma felsic calc-alkaline (FCA) rocks, (3a) 10-4 Ma median-K calc-alkaline (MKCA) rocks, and (3b) 7-5 Ma high-K calc-alkaline (HKCA) rocks.
The TH group consists mainly of basalts that display N-MORB-like REE pattern [(La/Yb)CN =0.5-0.8]. They also show small LILE enrichment and slight HFSE depletion in a spidergram. The BCA group composed of basalts shows slight LREE enrichment [(La/Yb)CN =1.6-2.2]. They have strong LILE enrichment and strong HFSE depletion. All felsic rocks including FCA group, MKCA group and HKCA group exhibit strong LILE enrichment and strong HFSE depletion in a spider diagram.
More specifically, magmatic zircons from I-type granitoids of the CA group are characterized by DM-like εHf(t) values (+14.4-+17.1) and low U concentrations (128-374 ppm). Those from the MKCA group, composed of rock types including diorite, andesite and dacite, also have small U (125-234 ppm) and DM-like εHf(t) values (+14.6-+15.6). Yet, those from dacites of the HKCA group have markedly higher U (1058-1365 ppm) and lower εHf(t) values (-2.5-+1.7), together with abundant inherited zircon grains.
All three stages of magmatic rocks show subduction-related geochemical signatures. The TH group shows geochemical features consistent with an intra-oceanic arc setting. The 30-15 Ma calc-alkaline group composed of bimodal rocks indicate that they may form in an extensional setting. The last stageis heterogeneous. The MKCA rocks' DM-like εHf(t) values limit terrestrial or “old continental crust” contribution, whereas the HKCA rocks' lower εHf(t) values suggest significant contribution. Their heterogeneity and lack of basic rocks may indicate that they are not magmatism of a subduction zone.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:27:59Z (GMT). No. of bitstreams: 1
U0001-0408202017380200.pdf: 19349626 bytes, checksum: 904e00f45e4532f771d7ab9d003a2793 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 ........................................................................................................... i
誌謝 .................................................................................................................................. ii
中文摘要 ......................................................................................................................... iv
ABSTRACT .................................................................................................................... vi
目錄 ................................................................................................................................ vii
圖錄 ................................................................................................................................. ix
表錄 ................................................................................................................................. xi
Chapter 1 緒論............................................................................................................ 1
1.1 前言 ................................................................................................................ 1
1.2 研究動機與目的 ............................................................................................ 2
1.2.1 研究動機 ............................................................................................... 2
1.2.2 研究目的 ............................................................................................... 3
1.3 前人研究 ........................................................................................................ 4
1.3.1 蘇拉威西地質背景 ............................................................................... 4
1.3.2 北蘇拉威西的岩漿活動與構造演化 ................................................... 8
Chapter 2 研究方法 ................................................................................................. 14
2.1 野外觀察與採樣 .......................................................................................... 14
2.2 岩石光學薄片觀察 ...................................................................................... 15
2.3 全岩主量元素分析 ...................................................................................... 15
2.3.1 前處理 ................................................................................................. 16
2.3.2 燒失量分析 ......................................................................................... 17
2.3.3 全岩主量元素分析 ............................................................................. 17
2.4 全岩微量元素分析 ...................................................................................... 19
2.4.1 前處理 ................................................................................................. 21
2.4.2 USGS 標準樣品分析 .......................................................................... 22
2.5 鋯石鈾鉛定年分析 ...................................................................................... 25
2.5.1 前處理 ................................................................................................. 27
2.5.2 上機分析 ............................................................................................. 29
2.5.3 數據處理與檢測 ................................................................................. 30
2.6 鋯石鉿同位素分析 ...................................................................................... 32
2.6.1 上機分析 ............................................................................................. 33
2.6.2 數據處理與檢測 ................................................................................. 33
Chapter 3 分析結果 ................................................................................................. 35
3.1 野外觀察與採樣 .......................................................................................... 35
3.2 鋯石鈾鉛定年 .............................................................................................. 39
3.3 鋯石鉿同位素 .............................................................................................. 41
3.4 岩石薄片觀察 .............................................................................................. 49
3.4.1 始新世至漸新世 ................................................................................. 49
3.4.2 漸新世至中中新世(30-15 Ma) .......................................................... 50
3.4.3 中中新世至上新世(10-4 Ma) ............................................................ 52
3.5 全岩主量與微量元素分析 .......................................................................... 53
3.5.1 始新世至漸新世 ................................................................................. 53
3.5.2 漸新世至中中新世(30-15 Ma) ..........................................................57
3.5.3 中中新世至上新世(10-4 Ma) ............................................................ 62
Chapter 4 討論.......................................................................................................... 68
4.1 北蘇拉威西新生代岩漿活動之岩石成因 .................................................. 68
4.1.1 始新世至漸新世岩漿活動 ................................................................. 68
4.1.2 漸新世至中中新世岩漿活動(30-15 Ma) .......................................... 70
4.1.3 中中新世至上新世岩漿活動(10-4 Ma) ............................................ 76
4.1.4 高鉀鈣鹼性火成岩的地殼訊號 ......................................................... 79
4.2 北蘇拉威西弧岩漿活動之地體意義 .......................................................... 82
Chapter 5 結論.......................................................................................................... 85
參考文獻.................................................................................................................. 86
附錄A - 北蘇拉威西新生代火成岩採樣位置及其實驗分析清單
附錄B - 鋯石鈾鉛定年結果
附錄C - 鋯石鉿同位素測定結果
附錄D - 全岩主量元素與微量元素結果
附錄E - 各期樣本與前人數據分佈位置圖
dc.language.isozh-TW
dc.title北蘇拉威西新生代岩漿活動的年代與地球化學特徵zh_TW
dc.titleAge and geochemical constraints on Cenozoic magmatism in Northern Sulawesien
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.coadvisor朱美妃(Mei-Fei Chu)
dc.contributor.oralexamcommittee賴昱銘(Yu-Ming Lai),李皓楊(Hao-Yang Lee),彭君能(Kwan-Nang Pang)
dc.subject.keyword北蘇拉威西弧,火成岩,鋯石鈾鉛定年,地球化學,zh_TW
dc.subject.keywordNorthern Sulawesi,magmatism,geochemistry,zircon U-Pb age,en
dc.relation.page117
dc.identifier.doi10.6342/NTU202002401
dc.rights.note有償授權
dc.date.accepted2020-08-11
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
U0001-0408202017380200.pdf
  目前未授權公開取用
18.9 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved