請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53696完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳榮河 | |
| dc.contributor.author | Yung-Wei Lin | en |
| dc.contributor.author | 林永偉 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:27:48Z | - |
| dc.date.available | 2015-08-07 | |
| dc.date.copyright | 2015-08-07 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-03 | |
| dc.identifier.citation | 1.行政院農業委員會(1992),水土保持手冊,中華水土保持學會。
2.何敏龍(1997),”土石流發生機制與流動制止結構物之研究”,國立台灣大學土木工程研究所,博士論文。 3.周必凡、李德基、羅德富、呂儒仁、楊慶溪(1991),”泥石流防治指南”,科學出版社,第96-108頁。 4.林炳森、林基源(1999),”土石流之衝擊力與防治工程法介紹”,地工技術雜誌,第74期,第67-80頁。 5.施瑋庭(2014),”應用地工合成材加勁擋土牆防治土石流之研究”,國立台灣大學土木工程研究所,碩士論文。 6.陳志信(2012),”邊坡模型試驗探討護坡設施於降雨下的功能”, 國立台灣大學土木工程研究所,碩士論文。 7.陳怡儂(2007),'利用模型試驗探討顆粒性土壤邊坡滑動之行為”,國立台灣大學土木工程研究所,碩士論文。 8.陳冠宏(2006),”土石流濃度及細料對壩體攔阻特性影響之研究”,朝陽科技大學土木工程研究所,碩士論文。 9.陳榮河、紀伯全(2010),”模型邊坡試驗之因次分析”,地工技術雜誌,第125期,第7-17頁。 10.郭國振(2012),”顆粒性土壤邊坡於乾燥及降水情況下之破壞機制及影響範圍研究”,國立台灣大學土木工程研究所,博士論文。 11.連惠邦(2005),”土石流防治工程法之研究評估”,行政院農委會水體保持局,第73-76頁。 12.張立憲(1985),”土石流特性之探討”,中華水土保持學報,第16卷,第1期,第135-141頁。 13.張志銘(2009),”顆粒性土壤邊坡滑動破壞之力學機制”,國立台灣大學土木工程研究所,碩士論文。 14.童自裕(2013),”降雨引致異質性邊坡破壞之模型試驗”,國立台灣大學土木工程研究所,碩士論文。 15.游繁結(1990),”崩落型土石流之機制研究”,行政院國家科學委員會專題研究報告,NSC78-0404-P005-06B。 16.詹錢登(2000),”土石流概論”,科技圖書股份有限公司。 17.歐泰林(2004),”台灣東、北、中區土石流特性之分析”,國立台灣大學土木工程研究所,碩士論文。 18.歐璨瑋(2014),”模型試驗探討護坡設施於紅土礫石邊坡之效用”,國立台灣大學土木工程研究所,碩士論文。 19.簡瑋男(2010),”降雨引致不飽和顆粒土壤邊坡破壞之模型試驗研究”,國立台灣大學土木工程研究所,碩士論文。 20.羅佳明(2010),”落石區崖線崩退與崖錐堆積型態之研究”,國立台灣大學土木工程研究所,博士論文。 21.ASTM D422-63, ” Standard test method for particle-size analysis of soil”, ASTM International, West Conshohocken, PA, USA. 22.ASTM D854-06, ” Standard test method for specific gravity of soil solids by water pycnometer”, ASTM International, West Conshohocken, PA, USA. 23.ASTM D2216-05, “ Standard test method for laboratory determination of water (moisture) content of soil and rock by mass”, ASTM International, West Conshohocken, PA, USA. 24.ASTM D3080-04, ” Standard test method for direct shear test of soils under consolidated drained conditions”, ASTM International, West Conshohocken, PA, USA. 25.ASTM D4253-00, “ Standard test methods for maximum index density and unit weight of soils using vibratory table”, ASTM International, West Conshohocken, PA, USA. 26.ASTM D4254-00, “ Standard test methods for minimum index density and unit weight of soils using vibratory table”, ASTM International, West Conshohocken, PA, USA. 27.Chen, R. H., Kuo, K. J., Chen, Y. N., Ku, C. W. (2011), ”Model tests for studying the failure mechanism of dry granular soil slopes”, Engineering Geology, Vol. 119, pp. 51-63. 28.Evans, S. G., Hungr, O. (1993), “The assessment of rockfall hazard at the base of talus slope”, Canadian Geotechnical Journal, Vol. 30 pp. 620-636. 29.Hauksson, S., Pagliardi, M., Barbolini, M., Johannesson, T. (2007), “Laboratory measurements of impact forces of supercritical granular flow against mast-like obstacles”, Cold Regions Science and Technology, Vol. 49, No. 165, pp. 54-63. 30.Johnson, A. M. Rodine, J. R. (1984), “Debris flow”, Slope Instrability, John Wiley & Sons Ltd., pp. 257-361. 31.Jop, P., Forterre, Y., Pouliquen, O. (2006), “A constitutive law for dense granular flows”, Nature, Vol. 441, pp. 727-730. 32.Lynn, H. Marge, J. (2004), “Landslide types and processes”, U.S. Geological Survey, Fact Sheet 2004-3072, pp. 1-4. 33.Manzella, I., Labiouse, V. (2007), “Qualitative analysis of rock avalanches propagation by means of physical modelling of non-constrained gravel flows”, rock mechanics and rock engineering, Vol. 40, pp. 1-19. 34.Meisl, G. (1998), “Modellierung der reichweite von felsstürzen. fallbeispiele zur GIS-gestützten gefahrenbeurteilung aus dem bayrischen und tiroler alpenraum”, Innsbrucker Geographische Studien, Vol. 28, pp. 6-15. 35.Nicolas, T., Patrick, R., Alexandre, V., Wolfgang, L., Jose, M. P., James, T. J., Renaud, D. (2003), “Superstable granular heap in a thin channel”, physical review letters, Vol. 91, No. 26, pp. 264301-1-264301-4. 36.Petje, U. Ribicic, M. Mikos, M. (2005), “Computer simulation of stone fall and rockfalls”, Acta Goegraphica Slovenica, Vol. 45, No. 2, pp. 93-120. 37.PIV view2C/3C, version2.4, User Manual (2006). PIVTEC, Germany. 38.Pudasaini, S. P., Hsiau, S. S., Wang, Y., Hutter, K. (2005), “Velocity measurements in dry granular avalanches using particle image velocimetry technique and comparison with theoretical predictions”, Physics of Fluids, Vol. 17, No. 9. 39.Raffel, M., Willert, C., Kompennhans, J. (1998), “Particle image velocimetry-a parctical Guide”, Springer Verlag, Berlin. 40.Ritchie, A. M. (1963), “The evaluation of rockfall and its control”, Highway Research Record, Vol. 17, pp. 123-125. 41.Scheidegger, A. E. (1973), “On the prediction of the reach and velocity of catastrophic landslides”, Rock Mechanics, Vol. 5, pp. 231-236. 42.Takahashi T. (1981), “ Debris flow”, Annu. Rev. Fluid Mech. 13, pp. 57–77 43.Varnes, D. J. (1978), “Slope movement type and processes”, in Landslides: Analylsis and Control, Transportation Research Boar, National Research Council, Special Report 176, pp. 11-33. 44.White, D. J., Take, W. A. Bolton, M. D. (2003), “Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry”, Geotechnique, Vol. 53, No. 2, pp. 619-631. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53696 | - |
| dc.description.abstract | 本研究利用不同粒徑的乾顆粒(礫石、砂、玻璃珠)與選取豐丘與神木現地兩種不同類型土石流(礫石型、一般型)之土石級配縮小尺寸來當試驗材料,於砂箱模型中模擬其流動及行為之探討。試驗採用可控制開關的鋁製漏斗型降土設備,落距為50 cm,使試體落至15∘坡面後流動。試驗的過程中,以攝影機觀察並擷取試體顆粒之運動影像,再應用質點影像測速儀(Particle Image Velocimetry, PIV)擷取影像及進行分析。此外於流動段坡趾處架設衝擊力量測裝置,記錄流體之衝擊力大小。
乾顆粒流考慮不同粒徑與量體,試驗結果發現,礫石撞擊坡面後跳動距離大,初始速度較快,但流動過程中,顆粒間因相互碰撞、摩擦等使流速以20~35%比率急遽下降,並快速堆積於坡面上,故堆積影響範圍小,1/4吋礫石堆積的長度與寬度比值為2.06,3/8吋礫石則為2.33;當量體增加時,此堆積現象會更為明顯,此時1/4吋與3/8吋礫石堆積長寬比為2.16與2.27。而砂流動性較佳,流速雖以4~6%比率逐漸下滑,仍能以較快速度進入堆積區,影響範圍較大,長寬比為1.79。此外,礫石在撞擊量測裝置時,因流速已經變很緩慢,所得衝擊力會低於砂顆粒之衝擊力。另考慮球形且表面光滑之玻璃珠,在流動過程中因與坡面摩擦甚小,會因重力加速度而以5~13%比率增加其流速,而玻璃珠為大顆粒,在這些條件下,玻璃珠衝擊力會遠大於其他乾顆粒試驗所得者。 土石流試驗考慮不同類型與量體,由本試驗得知,此兩種因素對流動速度影響不大,但衝擊力方面有部分相同與不同之處,皆出現兩波尖峰值,且集中於流體剛撞擊時。當量體增加一倍時,其衝擊歷時大致相同,並不會延長,反而是撞擊後雍高,衝擊面積變大,使測得力量上升。然若將試驗所量到衝擊尖峰值除上其作用面積,可發現單位面積所受的力大致相同;但含大顆粒較多的礫石型單位面積之衝擊力大於一般型土石流約為1.167倍。 | zh_TW |
| dc.description.abstract | This study focused on the behavior of both dry and wet granular materials flowing down from upslope by performing model tests in a sand box. The dry test materials of different particle sizes were gravels, sands, and glass beads. The wet test materials were selected according to the similitude laws and the particle size distribution of the materials at two debris flow sites, Feng-chiu and Shen-mu, respectively. The material at Feng-chiu is composed mainly of gravels and is called gravel type, while that at Shen-mu has more fines and is called general type. The test materials were stored in an aluminum hopper before test, and were subsequently released from a distance of 50-cm high onto a 15˚ slope by a control switch of the equipment. During the test the movement of the particles was recorded by three video cameras, and the analysis of the images of particles was performed by a particle image velocimetry (PIV). Moreover, a device used as the obstacle was set up at the toe of the slope for measuring the impact force of the material.
To test the dry granular flows, different particle sizes and quantities were considered. The test result showed that the gravels traveled a larger distance after impacting the slope than the sands; it consequently resulted in faster initial velocity. However, during the flowing process, the velocity of the gravels decreased quickly because of the collision between particles as well as the friction from the slope surface. As a result, most of the gravels deposited on the slope, having no obvious run-out zone. As the amount of gravels was increased, this phenomenon became even more obvious. On the contrary, the sands have better fluidity and moved with faster speed than the gravels. Therefore, the sands had a clear run-out distance and accumulated in the toe area of the slope. In addition, the impact force induced by the gravels was less than that of the sands due to their different velocity characteristics. The spherical glass beads have smooth surfaces, and their velocities increased all the way down to the toe of the slope. Consequently, the impact force induced by the glass beads was the highest among the three granular-material flows. In testing wet flows, two types of flow with different quantities were taken into consideration. The test result showed that the composition of flow had little effect on its velocity, and that both flows displayed two obvious peaks in the time history of impact force. It was found that the duration of impact force remained nearly unchanged, even though the quantity of flow was increased. After impacting the obstacle, the flow ran up, impacted a larger portion of the obstacle, and induced higher impact force. Nevertheless, the impact force per unit area was about the same irrespective of the flow type. Further, the gravel-type flow induced higher impact force per unit area than the general-type flow. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:27:48Z (GMT). No. of bitstreams: 1 ntu-104-R02521123-1.pdf: 6551262 bytes, checksum: be08cc3b1b2396284b898f16c516486f (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II Abstract III 目錄 V 表目錄 VII 圖目錄 VIII 符號說明 XII 第一章 緒論 1 1.1 研究動機 1 1.2 研究方法 1 1.3 研究內容 2 第二章 文獻回顧 4 2.1 顆粒性土壤墜落與滑動4 2.2 顆粒滑動之模型試驗 5 2.3 PIV之應用 7 2.4 土石流簡介 9 2.4.1 土石流特性 10 2.4.2 土石流衝擊力 11 2.4.3 現地案例 11 第三章 模型試驗 32 3.1 模型相似性 32 3.2 材料基本性質 33 3.2.1 乾顆粒 33 3.2.2 模擬現地土樣 34 3.2.3 模型相似性分析 34 3.3 模型設計與量測設備 35 3.3.1 模型設計 35 3.3.2 量測設備 36 3.4 試驗規劃 38 3.5 試驗步驟 39 3.5.1 乾顆粒流試驗 39 3.5.2 模擬土石流試驗 41 第四章 試驗結果與分析 56 4.1 試驗重複性驗證 57 4.2 乾砂試驗 57 4.3 礫石試驗 59 4.4 玻璃珠試驗 61 4.5 模擬土石流試驗 61 4.6 綜合討論 63 4.6.1 乾顆粒流試驗 63 4.6.2 土石流試驗 65 第五章 結論與建議 101 5.1 結論 101 5.2 建議 102 參考文獻 103 | |
| dc.language.iso | zh-TW | |
| dc.subject | 模型試驗 | zh_TW |
| dc.subject | 乾顆粒流 | zh_TW |
| dc.subject | 衝擊力 | zh_TW |
| dc.subject | PIV分析 | zh_TW |
| dc.subject | 土石流 | zh_TW |
| dc.subject | debris flow | en |
| dc.subject | impact force | en |
| dc.subject | PIV analysis | en |
| dc.subject | Dry particle flow | en |
| dc.subject | model test | en |
| dc.title | 模型試驗探討乾濕顆粒流之行爲 | zh_TW |
| dc.title | Model Test on the Behavior of Dry and Wet Granular Flows | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林三賢,林基源 | |
| dc.subject.keyword | 乾顆粒流,土石流,模型試驗,PIV分析,衝擊力, | zh_TW |
| dc.subject.keyword | Dry particle flow,debris flow,model test,PIV analysis,impact force, | en |
| dc.relation.page | 106 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-03 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 6.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
