請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53672完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李公哲 | |
| dc.contributor.author | Shu-Yun Huang | en |
| dc.contributor.author | 黃書芸 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:27:21Z | - |
| dc.date.available | 2025-08-22 | |
| dc.date.copyright | 2015-08-06 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-04 | |
| dc.identifier.citation | AlMarzooqi, F.A., Al Ghaferi, A.A., Saadat, I., Hilal, N. (2014). Application of Capacitive Deionisation in water desalination: A review. Desalination, 342,3-15.
Anderson, M.A., Cudero A.L., Alma, J. P. (2010). Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete?. Electrochimica Acta, 55, 3845-3856. Brun, N., Prabaharan, S.R.S., Surcin, C. , Morcrette, M., Deleuze, H. , Birot, M., Babot, O. , Achard, M.-F., Backov, R. (2012). Design of Hierarchical Porous Carbonaceous Foams from a Dual-Template Approach and Their Use as Electrochemical Capacitor and Li Ion Battery Negative Electrodes. The Journal of Physical Chemistry C, 116, 1408-1421. El-Deen, A.G., Barakat, N.A.M., Kim, H.Y. (2014). Graphene wrapped MnO2-nanostructures as effective and stable electrode materials for capacitive deionization desalination technology. Desalination, 344, 289-298. Frackowiak, E., Be’guin, F. (2001). Carbon materials for the electrochemical storage of energy in capacitors. Carbon, 39, 937 –950. Fu, R.W., Li, Z.H., Liang, Y.R., Li, F., Xu, F., Wu, D.C. (2011) Hierarchical porous carbons: design, preparation, and performance in energy storage. New Carbon Materials, 26, 171-179. Hou, C.H., Huang, C.Y., Hu, C.Y. (2013). Application of capacitive deionization technology to the removal of sodium chloride from aqueous solutions. International Journal of Environmental Science and Technology, 10, 753-760. Hou, C.H., Liang, C., Yiacoumi, S., Dai, S., Tsouris, C. (2006). Electrosorption capacitance of nanostructured carbon-based materials. Journal of colloid and interface science, 302, 54-61. Hou, C.H., Huang, C.Y. (2013). A comparative study of electrosorption selectivity of ions by activated carbon electrodes in capacitive deionization. Desalination, 314, 124-129. Hou, C. H., Huang, J.F., Lin, H.R., Wang, B.Y. (2012). Preparation of activated carbon sheet electrode assisted electrosorption process. Journal of the Taiwan Institute of Chemical Engineers, 43,473-479. Laxman, K., Myint, M.T.Z., Al Abri, M., Sathe, P., Dobretsov, S., Dutta, J. (2015). Desalination and disinfection of inland brackish ground water in a capacitive deionization cell using nanoporous activated carbon cloth electrodes. Desalination, 362, 126-132. Li, L., Zou, L., Song, H., Morris, G. (2009). Ordered mesoporous carbons synthesized by a modified sol–gel process for electrosorptive removal of sodium chloride. Carbon, 47, 775-781. Li, M., Xue, J. (2012). Ordered mesoporous carbon nanoparticles with well-controlled morphologies from sphere to rod via a soft-template route. Journal of colloid and interface science, 377, 169-175. Liang, Y., Liang, F., Li, Z., Wu, D., Yan, F., Li, S., Fu, R. (2010). The role of mass transport pathway in wormholelike mesoporous carbon for supercapacitors. Physical chemistry chemical physics : PCCP, 12, 10842-10845. Liu, Y., Chen, T., Lu, T., Sun, Z., Chua, D.H.C., Pan, L. (2015). Nitrogen-doped porous carbon spheres for highly efficient capacitive deionization. Electrochimica Acta, 158, 403-409. Liu Y., Pan, L., Chen, T., Xu, X., Lu, T., Sun, Z., Chua, D.H.C. (2015). Porous carbon spheres via microwave-assisted synthesis for capacitive deionization. Electrochimica Acta, 151, 489-496. Mayes, R.T., Tsouris, C., Kiggans Jr, J.O., Mahurin, S.M., DePaoli, D.W., Dai, S. (2010). Hierarchical ordered mesoporous carbon from phloroglucinol-glyoxal and its application in capacitive deionization of brackish water. Journal of Materials Chemistry, 20, 8674. Shaposhnik, V.A., Kesore, K. (1997). An early history of electrodialysis with permselective membranes. Journal of Membrane Science, 136, 35-39. Stober, W., Fink, A., Bohn, E. (1968). Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range. Journal of colloid and interface science, 26, 62-69. Peng, Z., Zhang, D., Shi, L., Yan, T., Yuan, S., Li, H., Gao, R., Fang, J. (2011). Comparative Electroadsorption Study of Mesoporous Carbon Electrodes with Various Pore Structures. The Journal of Physical Chemistry C, 115, 17068-17076. Farmer, J. C., Fix, D. V., Mack, G. V., Pekala, R. W., & Poco, J. F. (1996). Capacitive deionization of NaCl and NaNO3 solutions with carbon aerogel electrodes. Journal of the Electrochemical Society, 143(1), 159-169. Porada, S., Borchardt, L., Oschatz, M., Bryjak, M., Atchison, J.S., Keesman, K.J., Kaskel, S., Biesheuvel, P.M., Presser, V. (2013). Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization. Energy & Environmental Science, 6, 3700. Porada, S., Zhao, R., van der Wal, A., Presser, V., Biesheuvel, P.M. (2013). Review on the science and technology of water desalination by capacitive deionization. Progress in Materials Science, 58, 1388-1442. Tsouris, C., Mayes, R., Kiggans, J., Sharma, K., Yiacoumi, S., DePaoli, D., Dai, S. (2011). Mesoporous carbon for capacitive deionization of saline water. Environmental science & technology, 45, 10243-10249. Wang, D.W., Li, F., Liu, M., Lu, G.Q., Cheng, H.M. (2008) 3D Aperiodic Hierarchical Porous Graphitic Carbon Material for High-Rate Electrochemical Capacitive Energy Storage. Angewandte Chemie, 120, 379-382. Wang, G., Dong, Q., Ling, Z., Pan, C., Yu, C., Qiu, J. (2012). Hierarchical activated carbon nanofiber webs with tuned structure fabricated by electrospinning for capacitive deionization. Journal of Materials Chemistry, 22, 21819. Wang, G., Pan, C., Wang, L., Dong, Q., Yu, C., Zhao, Z., Qiu, J. (2012). Activated carbon nanofiber webs made by electrospinning for capacitive deionization. Electrochimical Acta, 69, 65-70. Wang, H., Shi, L., Yan, T., Zhang, J., Zhong, Q., Zhang, D. (2014). Design of graphene-coated hollow mesoporous carbon spheres as high performance electrodes for capacitive deionization. Journal of Materials Chemistry A, 2, 4739. Wang, H., Zhang, D., Yan, T., Wen, X., Shi, L., Zhang, J. (2012). Graphene prepared via a novel pyridine–thermal strategy for capacitive deionization. Journal of Materials Chemistry, 22, 23745. Wang, H., Zhang, D., Yan, T., Wen, X., Zhang, J., Shi, L., Zhong, Q. (2013). Three-dimensional macroporous graphene architectures as high performance electrodes for capacitive deionization. Journal of Materials Chemistry A, 1, 11778. Welgemoed, T.J., Schutte, C.F. (2005). Capacitive Deionization Technology™: An alternative desalination solution. Desalination, 183, 327-340. Wen, X., Zhang, D., Shi, L., Yan, T., Wang, H., Zhang, J. (2012) Three-dimensional hierarchical porous carbon with a bimodal pore arrangement for capacitive deionization. Journal of Materials Chemistry, 22, 23835. Wen, X., Zhang, D., Yan, T., Zhang, J., Shi, L. (2013). Three-dimensional graphene-based hierarchically porous carbon composites prepared by a dual-template strategy for capacitive deionization. Journal of Materials Chemistry A, 1, 12334. Zhang, D., Wen, X., Shi, L., Yan, T., Zhang, J. (2012) Enhanced capacitive deionization of graphene/mesoporous carbon composites. Nanoscale, 4, 5440-5446. Zhang, J., Zhang, Y., Lian, S., Liu, Y., Kang, Z., Lee, S.T. (2011). Highly ordered macroporous carbon spheres and their catalytic application for methanol oxidation. Journal of colloid and interface science, 361, 503-508. Zhao, Y., Hu, X.M., Jiang, B.H., Li, L. (2014). Optimization of the operational parameters for desalination with response surface methodology during a capacitive deionization process. Desalination, 336, 64-71. Zou, L., Li, L., Song, H., Morris, G. (2008) Using mesoporous carbon electrodes for brackish water desalination. Water research, 42, 2340-2348. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53672 | - |
| dc.description.abstract | 隨著工業開發及人口迅速增長,人們對水資源的需求量增加,水淡化技術逐漸受到重視。其中,電容去離子技術 (Capacitive deionization, CDI) 是一種新穎的水處理技術,以奈米碳材作為電極,經由電吸附程序,可達到移除水中帶電離子之目的。本研究以三維階層多孔碳球(Three-dimensional hierarchical porous carbon spheres, 3D-HPCS)作為電容去離子技術中的理想電極材料,而3D-HPCS特點為含有階層孔洞結構及良好的三維孔洞通道。研究中將多孔奈米碳材與不同孔洞結構特性的商用碳材相互比較,包含石墨(Graphite)、活性碳(Activated carbon, AC)和有序中孔碳材(Order mesoporous carbon, OMC)。藉由電化學實驗可分析離子於材料孔洞中的電吸附行為,實驗結果顯示3D-HPCS為一個較理想的電極材料,與其他材料相比,具有高的電雙層電容值、快速的離子傳輸通道和低的材料內電阻。除此之外,在CDI實驗中,3D-HPCS電極於0.5 ~ 10 mM 的氯化鈉水溶液中都有好的電吸附容量表現,於低濃度下(0.5 mM),電吸容量為5.17 mg/g,當濃度提高至10mM時,電吸容量為33.86mg/g。最後由CDI實驗結果可得知3D-HPCS電極和其他材料相比,每單位克重具有較良好的脫鹽能力。因此,3D-HPCS可以作為一個理想的CDI電極材料。本研究結果可以提供新的CDI電極材料之研究方向。 | zh_TW |
| dc.description.abstract | Three-dimensional hierarchical porous carbon spheres (3D-HPCS) are rationally designed as electrode materials for capacitive deionization (CDI). The 3D-HPCS was observed with a hierarchal pores structure by SEM and TEM. As compared to Graphite, AC, and order mesoporous carbon (OMC) electrodes, 3D 3D-HPCS spheres have well pore properties with a specific surface of 644 m2/g and total pore volume of 0.86 cm3/g. In this work, the electrosorption behaviors of 3D-HPC electrode were investigated by the electrochemical experiments, including CV, EIS, GC, at different sodium chloride (NaCl) concentrations. From the experimental results, 3D-HPCS electrode has ideal electrical double layer capacitance and low inner resistance of ion transportation from bulk solution onto the electrode. Furthermore, the electrosorption capacity of 3D-HPCS electrode was 33.86 mg/g at 1.2 V in 10 mM NaCl solution. As evidenced, in comparison with other nanoporous carbon electrodes, the 3D-HPCS electrodes has the highest electrosorption capacity, indicating excellent desalting capability for CDI process. Consequently, the prepared 3D-HPCS electrodes has been demonstrated as a desirable electrode materials for CDI. The results can provide useful information to develop CDI electrode materials. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:27:21Z (GMT). No. of bitstreams: 1 ntu-104-R02541202-1.pdf: 4508087 bytes, checksum: d7f5df3d11c58e8d7a44fe4e6033ecba (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 誌謝 I
中文摘要 II ABSTRACT III CHAPTER 1: INTRODUCTION 1 1.1. Introduction 1 CHAPTER 2: LITERATURE REVIEW 3 2.1. Traditional desalination technology 3 2.2. Capacitive deionization technology 5 2.2.1. The principle of CDI 5 2.2.2. Electric double layer overlapping 7 2.2.3. Key factors for CDI 7 2.3. Nanoporous carbon electrode for CDI 8 2.3.1. Nanoporous carbon materials 8 2.3.2. Development of electrode materials for CDI 9 2.3.3. Ideal electrode for CDI 11 2.4. Three-dimensional (3D) hierarchical porous carbon for CDI 12 2.4.1. 3D hierarchical porous carbon 12 2.4.2. Fabrication of 3D hierarchical porous carbon 14 2.4.3. Fabrication of 3D hierarchical porous carbon 15 2.5. Objective 16 CHAPTER 3: MATERIAL AND METHODS 17 3.1. Materials preparation 17 3.1.1. Fabrication of hierarchical structure materials 17 3.1.2. Characterization 20 3.1.3. Synthesis of electrodes 20 3.2. Electrochemical analysis 21 3.2.1. Cyclic voltammetry 22 3.2.2. Electrochemical impedance spectroscopy 22 3.2.3. Galvanstatic chaege/discharge measurement 23 3.3. Electrosorption experiments of capacitive deionization 25 3.1.1. Electrosorption capacity 25 CHAPTER 4: RESULTS AND DISSCUSION 28 4.1. Material characterization 28 4.1.1. Surface morphology of carbon materials 28 4.1.2. Pore properties of carbon materials 33 4.2. Electrochemical performance 36 4.2.1. Cyclic voltammetry experiments 36 4.2.2. Electrochemical impedance spectroscopy 43 4.2.3. Galvanostatic charge–discharge experiment 47 4.3. Electrosorption experiments 52 4.3.1. Electrosorption performance of 3D-HPCS 52 4.3.2. Comparison of desalting behavior 53 CHAPTER 5: CONCLUSION AND SUGGESTION 60 5.1. Conclusion 60 5.2. Suggestion 61 REFERENCES 62 | |
| dc.language.iso | en | |
| dc.subject | 電雙層電容 | zh_TW |
| dc.subject | 三維階層孔洞結構 | zh_TW |
| dc.subject | 奈米碳材 | zh_TW |
| dc.subject | 電容去離子技術 | zh_TW |
| dc.subject | capacitive deionization | en |
| dc.subject | electrical double layer capacitance | en |
| dc.subject | carbon electrode | en |
| dc.subject | three-dimensional hierarchical structure | en |
| dc.title | 以階層孔洞碳材提升電容去離子技術之脫鹽效能分析 | zh_TW |
| dc.title | Hierarchical Ordered Porous Carbons with Macro/Mesopores and Micropores as High Performance Electrodes in Capacitive Deionization | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 侯嘉洪 | |
| dc.contributor.oralexamcommittee | 林正芳,吳嘉文 | |
| dc.subject.keyword | 三維階層孔洞結構,電容去離子技術,電雙層電容,奈米碳材, | zh_TW |
| dc.subject.keyword | three-dimensional hierarchical structure,capacitive deionization,electrical double layer capacitance,carbon electrode, | en |
| dc.relation.page | 68 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-04 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 4.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
