請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53661完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖振鐸(Chen-Tuo Liao) | |
| dc.contributor.author | Jie-Yu Zhuang | en |
| dc.contributor.author | 莊傑宇 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:27:09Z | - |
| dc.date.available | 2020-08-11 | |
| dc.date.copyright | 2015-08-11 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-04 | |
| dc.identifier.citation | 1. Bergman,B.and Hyn en,A.(1997). Dispersion effects from unreplicated designs in the 2kp series. Technometrics 39, pp.191-198.
2. Box,G.E.P.and Meyer,R.D.(1986). Dispersion effects from fractional factorial designs. Technometrics 28, pp.19-27. 3. Brenneman,W.A.and Nair,V.N. (2001). Methods for identifying dispersion effects in unreplicated factorial experiments: a critical analysis and proposed strategies. Technometrics 43, pp.388-405. 4. Chen,J. & Sun,D.X. & Wu,C.F.J.(1993). A catalogue of two-level and three-level fractional factorial designs with small runs. International Statistical Review 61, pp.131-145. 5. Eibl,S. & Kess,U. & Pukelsheim(1992). Achieving a Target Value For a Manufacturing Process:A Case Study.Journal of Quality Technology 24, pp.22-26. 6. Ghosh,S. & Lagergren,E.S.(1990) Dispersion models and estimation of dispersion effects in replicated factorial experiments. Journal of Statistical Planning and Inference 26 , pp.253-262. 7. Liao,C.T.(2000). Identification of dispersion effects from unreplicated 2nk fractional factorial design. Computational Statistics & Data Analysis 33, pp.291-289. 8. McGrath,R.N. & Lin,D.K.J.(2001a). Testing multiple dispersion effect in unreplicated fractional factorial designs. Technometrics 43, pp.406-414. 9. McGrath,R.N. & Lin,D.K.J.(2001b). Confunding of location and dispersion in unreplicated fractional factorials. Journal of Quality Technology 33, pp. 129-139. 10. Montgomery,D.C.(2012). Design and Analysis of Experiments. Hoboken: Wiley. 11. Nair,V.N. & Pregibon,D.(1988). Analyzing dispersion effects from replicated factorial experiments. Technometrics 30, pp.247-257. 12. Nelder,J.A. & Lee,Y.(1991). Generalized linear models for the analysis of Taguchi-type experiments. Applied Stochastic Models and Data Analysis 7, pp.107-120. 13. Pan,G. (1999). The impact of unidentified location effects on dispersion-effects identification from unreplicated factorial designs. Technometrics 41, pp.313-326. 14. Satterthwaite,F,E(1946). An approximate distribution of estimates of variance components. Biometrics Bulletin 2, pp.110-114. 15. Sirvanci,M.B. & Durmaz,M.(1993). Variation reduction by the use of designed experiments. Quality Engineering 5, pp.611-618. 16. Tasi,S.F. & Liao,C.T. & Chai,F.S.(2015). Identification of Dispersion Effects from Partially Replicated Two-Level Factorial Designs.Journal of Quality Technology 47, pp.43-53. 17. Tsui,K. & Weerahandi,S.(1989). Generalized p-value in significance testing of hypotheses in the presence of nuisance parameters. Journal of the American Statistical Association 84, pp.602-607. 18. Wang,P.C.(1989). Test for dispersion effects from orthogonal arrays.Computational Statistics & Data Analysis 8,pp.109-117. 19. Weerahandi,S.(2004). Generalized inference in repeated measures.New York:Wiley. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53661 | - |
| dc.description.abstract | 在一個生產或試驗的過程常常會存在許多的因子會影響生產或試驗的反應變數,當影響的因子的數量很大時往往會造成研究成本上升,因此如何找尋出有經濟效率的試驗設計一直是我們關心的課題。兩變級複因子設計為普遍被使用的設計,依照過去的研究,一個良好的試驗設計通常需要同時討論位置效應和分散效應,在過去的研究著重於位置效應,近年來對於分散效應的研究有深入探討,過去有不少的研究對於不重複與重複的試驗如何檢定分散效應皆提出不一樣的方法,Tasi,Liao & Chai(2015)提出對設計不一樣的想法,將不重複與重複的試驗取得一個平衡,簡而言之,對於部分處理組合進行重複試驗,該篇文章提出有效地重複二分之一處理組合的兩變級複因子設計,也提供了如何用Student’s t檢定位置效應以及應用廣義檢測變數(Generalized Test Variable)檢定分散效應,本文應用兩個方法做為檢測位置效應和分散效應的檢定方法,進一步延伸,將討論重複四分之一處理組合的設計,並提出如何重複四分之一處理組合兩變級複因子設計的方法且製作成表格提供參考。文中最後模擬在有分散效應的資料,並使用本文提供的設計是否能檢定出活潑效應,統計模擬的結果顯示我們提供的設計能良好判別分散效應。文中對於實例也有進行檢測,顯示使用該設計可以發現可能的活潑效應。 | zh_TW |
| dc.description.abstract | There might be several sources of variation that may impact the response during an experimental process. The two-level factorial design is often implemented in such a process. Those factors (effects) that affect the mean of the response are called as the active location factors (effects), also the factors (effects) that affect the variance of the response are called as the active dispersion factors (effects). Recently, Tasi & Liao & Chai (2015) proposed a class of partially replicated two-level factorial designs with repeated half (1/2) fractions. They also proposed a two-step procedure to identify both active location and dispersion effects. They first applied the concept of a generalized test variable (GTV) to develop a hypothesis test for identifying the active dispersion main effects. Then, use Student's t test to detect the active location effects. In this thesis, we adopt their testing procedure, but focus on the class of designs with repeated quarter (1/4) fractions. We present a series of the desired partially replicated designs with practical run sizes. In addition, some real data sets and simulation studies are given to evaluate the performance of the use of the proposed designs. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:27:09Z (GMT). No. of bitstreams: 1 ntu-104-R02621209-1.pdf: 487744 bytes, checksum: bef91ae81d9144bc719791cf9e30d135 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 中文摘要............................................i
ABSTRACT..........................................ii 目錄..............................................iii 圖目錄.............................................iv 表目錄.............................................v 第一章前言...........................................1 1.1 研究目的.........................................1 1.2 前人研究.........................................2 1.3 論文架構.........................................3 第二章模型設定與效應檢定...............................4 2.1 建構模型.........................................4 2.2 檢測分散效應.....................................5 2.2.1 廣義檢測變數...................................5 2.2.2 檢測分散效應...................................5 2.3 檢測位置效應.....................................8 第三章部分重複因子設計...............................13 3.1 尋找設計結構....................................13 3.1.1 Tsai & Liao & Chai method....................13 3.1.2 Deduction two words method...................14 3.2 可檢測分散效應因子...............................15 第四章模擬..........................................19 4.1 模型假設與參數設定...............................19 4.2 模擬資料與檢測結果...............................20 第五章結論..........................................24 5.1 結論...........................................24 參考文獻............................................25 | |
| dc.language.iso | zh-TW | |
| dc.subject | 廣義檢測變數 | zh_TW |
| dc.subject | 部分重複複因子設計 | zh_TW |
| dc.subject | 位置效應 | zh_TW |
| dc.subject | 分散效應 | zh_TW |
| dc.subject | generalized P-value | en |
| dc.subject | generalized test variable | en |
| dc.subject | experimental design | en |
| dc.subject | dispersion effect | en |
| dc.subject | location effect | en |
| dc.title | 部分重複之複因子設計用於篩選活潑分散效應與位置效應 | zh_TW |
| dc.title | Identification of Active Dispersion Effects and Location Effects for Partially Replicated Two-Level Factorial Designs | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡風順(Feng-Shun Chai),蔡欣甫(Shin-Fu Tsai) | |
| dc.subject.keyword | 部分重複複因子設計,位置效應,分散效應,廣義檢測變數, | zh_TW |
| dc.subject.keyword | dispersion effect,experimental design,generalized test variable,generalized P-value,location effect, | en |
| dc.relation.page | 26 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-04 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 476.31 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
