請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53637完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳明汝(Ming-Ju Chen) | |
| dc.contributor.author | Wei-Ting Hung | en |
| dc.contributor.author | 洪偉庭 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:26:45Z | - |
| dc.date.available | 2020-08-06 | |
| dc.date.copyright | 2015-08-06 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-04 | |
| dc.identifier.citation | 沈澤臻。2014。藉由小鼠與犬隻模式探討Lactobacillus kefiranofaciens M1 於異位
性皮膚炎之研究。國立臺灣大學動物科學技術學研究所。碩士論文。 陳希嘉。2008。藉由變性梯度膠體電泳及寡核苷酸微陣列技術鑑定乳酸菌之研究。 國立臺灣大學動物科學技術學研究所。博士論文。 陳彥伯。2013。克弗爾分離菌株Lactobacillus kefiranofaciens M1 對腸道功能調節 之影響與機制探討。國立臺灣大學動物科學技術學研究所。博士論文。 黃懿儂。2010。台灣黏質發酵乳之機能性研究。國立臺灣大學動物科學技術學研 究所。碩士論文。 謝馨慧。2011。糖液克弗爾粒於不同發酵基質中之菌相分布與其分離菌株抗腸炎 機能性之研究。國立臺灣大學動物科學技術學研究所。碩士論文。 魏士弘。2014。篩選可刺激類升糖素胜肽-1 分泌之益生菌及探討其減緩高血糖症 之研究。國立臺灣大學動物科學技術學研究所。碩士論文。 Alwine, J. C., D. J. Kemp and G. R. Stark. 1977. Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc. Natl. Acad. Sci. U S A. 74: 5350-5354. Araki, Y., K. Mukaisyo, H. Sugihara, Y. Fujiyama and T. Hattori. 2010. Increased apoptosis and decreased proliferation of colonic epithelium in dextran sulfate sodium-induced colitis in mice. Oncol. Rep. 24: 869-874. Ashraf, R. and N. P. Shah. 2014. Immune system stimulation by probiotic microorganisms. Crit. Rev. Food Sci. Nutr. 54:938-956. Atreya, I. and M. F. Neurath. 2008. Immune cells in colorectal cancer: prognostic relevance and therapeutic strategies. Expert Rev Anticancer Ther. 8: 561-572. Bargonetti, J. and J. J. Manfredi. 2002. Multiple roles of the tumor suppressor p53. Curr. Opin. Oncol. 14: 86-91. 77 Chen, Y. P., T. Y. Lee, W. S. Hong, H. H. Hsieh and M. J. Chen. 2013. Effects of Lactobacillus kefiranofaciens M1 isolated from kefir grains on enterohemorrhagic Escherichia coli infection using mouse and intestinal cell models. J. Dairy Sci. 96: 7467-7477. Cui, X., Y. Jin, A. B. Hofseth, E. Pena, J. Habiger, A. Chumanevich, D. Poudyal, M. Nagarkatti, P. S. Nagarkatti, U. P. Singh and L. J. Hofseth. 2010. Resveratrol suppresses colitis and colon cancer associated with colitis. Cancer Prev. Res. 3: 549-559. Debruyne, D., T. Boterberg and M. E. Bracke. 2014. Cell aggregation assays. Methods Mol. Biol. 1070: 77-92. De Robertis, M., E. Massi, M. L. Poeta, S. Carotti, S. Morini, L. Cecchetelli, E. Signori and V. M. Fazio. 2011. The AOM/DSS murine model for the study of colon carcinogenesis: From pathways to diagnosis and therapy studies. J. Carcinog. 10: 9-75. De Rock, W, B. Claes, D. Bernasconi, J. De Schutter, B. Biesmans, G. Fountzilas, K. T Kalogeras, V. Kotoula, D. Papamichael, P. L. Puig, F. P. Llorca, P. Rougier, B. Vincenzi, D. Santini, G. Tonini, F. Cappuzzo, M. Frattini, F. Molinari, P. Saletti, S. De Dosso, M. Martini, A. Bardelli, S. Siena, A. S. Bianchi, J. Tabernero, T. Macarulla, F. Di Fiore, A. O. Gangloff, F. Ciardiello, P. Pfeiffer, C. Qvortrup, T. P. Hansen, E. V. Cutsem, H. Piessevaux, D. Lambrechts, M. Delorenzi and S. Tejpar. 2010. Effects of KRAS, BRAF, NRAS and PI3KCA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol. 11: 756-762. Duffy, M. J., P. M. McGowan and W. M. Gallagher. 2008. Cancer invasion and metastasis: changing views. J. Pathol. 214: 283-293. 78 Dunn, G. P., A. T. Bruce, H. Ikeda, L. J. Old and R. D. Schreiber. 2002. Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Rev. Immunol. 3: 991-998. Dunn, G. P., L. J. Old and R. D. Schreiber. 2004. The three Es of cancer immunoediting. Annu. Rev. Immunol. 22: 329-360. Eaden, J. A., K. R. Abrams and J. F. Mayberry. 2001. The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut 48: 526-535. Eaton, K. A., A. Honkala, T. A. Auchtung and R. A. Britton. 2011. Probiotic Lactobacillus reuteri ameliorates disease due to enterohemorrhagic Escherichia coli in germfree mice. Infect. Immun. 79: 185-191. Fearon, E. R. and B. Vogelstein. 1990. A genetic model for colorectal tumorigenesis. Cell 61: 759-767. Fukushima, Y., Y. Kawata, H. Hara, A. Terada and T. Mitsuoka. 1998. Effect of a probiotic formula on intestinal immunoglobulin A production in healthy children. Int. J. Food Microbiol. 42: 39-44. Gabrilovich, D. I. and S. Nagaraj. 2009. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 9: 162-174. Galdeano, C. M. and G. Perdigón. 2006. The probiotic bacterium Lactobacillus casei induces activation of the gut mucosal immune system through innate immunity. Clin. Vaccine Immunol. 13: 219-226. Galizia, G., M. Orditura, C. Romano, E. Lieto, P. Castellano, L. Pelosio, V. Imperatore, G. Catalano, C. Pignatelli and F. De Vita. 2002. Prognostic significance of circulating IL-10 and IL-6 serum levels in colon cancer patients undergoing surgery. Clin. Immunol. 102: 169-178. Garrett, W. S., G. M. Lord, S. Punit, G. L. Villarino, S. K. Mazmanian, S. Ito, J. N. 79 Glickman and L. H. Glimcher. 2007. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell 131: 33-45. Goel, A., C. N. Arnold, D. Niedzwiecki, J. M. Carethers, J. M. Dowell, L. Wasserman, C. Compton, R. J. Mayer, M. M. Bertagnolli and C. R. Boland. 2004. Frequent inactivation of PTEN promoter by hypermetilation in microsatellite instabilityhigh sporadic colorectal cancers. Cancer Res. 64: 3014-3021. Goldwater, P. N. and K. A. Bettelheim. 2012. Treatment of enterohemorrhagic Escherichia coli (EHEC) infection and hemolytic uremic syndrome (HUS). BMC Med. 10: 12-19. Grivennikov, S.I., F. R. Greten and M. Karin. 2009. Immunity, inflammation, and cancer. Cell 140: 883-899. Guzińska-Ustymowicz, K., A. Pryczynicz, A. Kemona and J. Czyzewska. 2009. Correlation between proliferation markers: PCNA, Ki-67, MCM-2 and antiapoptotic protein bcl-2 in colorectal cancer. Anticancer Res. 29: 3049-3052. Haghighi, H. R., J. Gong, C. L. Gyles, M. A. Hayes, B. Sanei, P. Parvizi, H. Gisavi, J. R. Chambers and S. Sharif. 2005. Modulation of antibody-mediated immune response by probiotics in chickens. Clin. Diagn. Lab Immunol. 12: 1387-1392. Hall, P. A., D. A. Levisond, A. L. Woods, C. C. Yu, D. B. Kellock, J. A. Watkinsj, D. M. Barnes, C. E. Gillet, R. Camplejohrn and R. Dovers. 1990. Proliferating-cellnuclear antigen (PCNA) immunolocalization in paraffin sections: an index of cell proliferation with evidence of deregulated expression in some neoplasms. J. Pathol. 162: 285-294. Hirayama, K., P. Baranczewski, J. E. Akerlund, T. Midtvedt, L. Möller and J. Rafter. 2000. Effects of human intestinal flora on mutagenicity of and DNA adduct formation from food and environmental mutagens. Carcinogenesis 21: 2105-2111. 80 Hsu, J. W., S. Y. Karim, M. R. King, J. C. Wojciechowski, D. Mickelsen, M. L. Blair, H. J. Ting, W. L. Ma and Y. F. Lee. 2011. Suppression of prostate cancer cell rolling and adhesion to endothelium by 1α, 25-dihydroxyvitamin D3. Am. J. Pathol. 178: 872-880. Hummel, S., K. Veltmana, C. Cichona, U. Sonnenbornb and M. A. Schmidta. 2012. Differential targeting of the E-cadherin/β-catenin complex by gram-positive probiotic lactobacilli improves epithelial barrier function. Appl. Environ. Microbiol. 78: 1140-1147. Ibarra, C., M. M. Amaral and M. S. Palermo. 2013. Advances in pathogenesis and therapy of hemolytic uremic syndrome caused by shiga toxin-2. I. U. B. M. B. Life. 65: 827-835. Irrazábal, T., A. Belcheva, S. E. Girardin, A. Martin and D. J. Philpott. 2014. The multifaceted role of the intestinal microbiota in colon cancer. Mol. Cell. 54: 309- 320. Kamada, N. and G. Núñez. 2014. Regulation of the immune system by the resident intestinal bacteria. Gastroenterology 146: 1477-1488. Kanneganti, M., M. M. Kenudson and E. Mizoguchi. 2011. Animal models of colitisassociated carcinogenesis. J. Biomed. Biotechnol. 342637. Kaper, J. B., J. P. Nataro and H. L. T. Mobley. 2004. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2: 123-140. Karmali, M. A., B. T. Steele, M. Petric and C. Lim. 1983. Sporadic cases of haemolyticuraemic syndrome associated with faecal cytotoxin and cytotoxin-producing Escherichia coli in stools. Lancet 1: 619-620. Kindt, T. J., B. A. Osborne, R. A. Goldsby and J. Kuby. 2006. Kuby Immunology, 6th edition. New York, W. H. Freeman. 81 Lim, J. Y., J. Yoon and C. J. Hovde. 2010. A brief overview of Escherichia coli O157:H7 and its plasmid O157. J. Microbiol. Biotechnol. 20: 5-14. Louis, P., G. L. Hold and H. J. Flint. 2014. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol. 12: 661-672. Mazmanian, S. K., J. L. Round and D. L. Kasper. 2008. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453: 620-625. Mead, P. S., L. Slutsker, V. Dietz, L. F. McCaig, J. S. Bresee, C. Shapiro, P. M. Griffin and R. V. Tauxe. 1999. Food-related illness and death in the United States. Emerg. Infect. Dis. 5: 607-625. Mohawk, K. L. and A. D. O’Brien. 2011. Mouse models of Escherichia coli O157:H7 infection and shiga toxin injection. J. Biomed. Biotechnol. 2581185. Oguma, K., H. Oshima, M. Aoki, R. Uchio, K. Naka, S. Nakamura, A. Hirao, H. Saya, M. M. Taketo and M. Oshima. 2008. Activated macrophages promote Wnt signalling through tumour necrosis factor-alpha in gastric tumour cells. EMBO J. 27: 1671-1681. Okayasu, I., T. Ohkusa, K. Kajiura, J. Kanno and S. Sakamoto. 1996. Promotion of colorectal neoplasia in experimental murine ulcerative colitis. Gut 39: 87-92. Papanikolaou, A., Q. S. Wang, D. Papanikolaou, H. E. Whiteley and D. W. Rosenberg. 2000. Sequential and morphological analyses of aberrant crypt foci formation in mice of differing susceptibility to azoxymethane-induced colon carcinogenesis. Carcinogenesis 21: 1567-1572. Page, A. V. and W. C. Liles. 2013. Enterohemorrhagic Escherichia coli infections and the hemolytic-uremic syndrome. Med. Clin. North Am. 97: 681-695. Pagnini, C., R. Saeed, G. Bamias, K. O. Arseneau, T. T. Pozarro and F. Cominelli. 2013. Probiotics promote gut health through stimulation of epithelial innate immunity. 82 Proc. Natl. Acad. Sci. U S A. 107: 454-459. Pandurangan, A. K. 2013. Potential targets for prevention of colorectal cancer: A focus on PI3K/Akt/mTOR and Wnt pathways. Asian Pac. J. Cancer Prev. 14: 2201-2205. Paradiso A., M. Rabinovich, C. Vallejo, M. Machiavelli, A. Romero, J. Perez, J. Lacava, M. A. Cuevas, R. Rodriquez, B. Leone, M. G. Sapia, G. Simone and M. De Lena. 1996. p53 and PCNA expression in advanced colorectal cancer: response to chemotherapy and long-term prognosis. Int. J. Cancer. 69: 437-441. Phillips, A. D. and G. Frankel. 2000. Intimin-mediated tissue specificity in enteropathogenic Escherichia coli interaction with human intestinal organ cultures. J. Infect. Dis. 181: 1496-1500. Quante, M. and T. C. Wang. 2008. Inflammation and stem cells in gastrointestinal carcinogenesis. Physiology 23: 350-359. Rodrigues, N. R., A. Rowan, M. E. Smith, I. B. Kerr, W. F. Bodmer, J. V. Gannon, and D. P. Lane. 1990. p53 mutations in colorectal cancer. Proc. Natl. Acad. Sci. U S A. 87: 7555-7559. Rosenberg, D. W., C. Giardina and T. Tanaka. 2009. Mouse models for the study of colon carcinogenesis. Carcinogenesis 30: 183-196. Sarasqueta, A. F., G. Forte, W. E. Corver, N. F. de Miranda, D. Ruano, R. van Eijk, J. Oosting, R. A. Tollenaar, T. van Wezel and H. Morreau. 2013. Integral analysis of p53 and its value as prognostic factor in sporadic colon cancer. BMC Cancer. 13: 277-287. Smith, J. L., P. M. Fratamico and N. W. Gunther 4th. 2014. Shiga toxin-producing Escherichia coli. Adv. Appl. Microbiol. 86: 145-197. Strober, W. 2009. The multifaceted influence of the mucosal microflora on mucosal dendritic cell responses. Immunity 31: 377-388. 83 Suzuki, R., H. Kohno, S. Sugie and T. Tanaka. 2004. Sequential observations on the occurrence of preneoplastic and neoplastic lesions in mouse colon treated with azoxymethane and dextran sodium sulfate. Cancer Sci. 95: 721-727. Tanaka, T. 2009. Colorectal carcinogenesis: Review of human and experimental animal studies. J. Carcinog. 8: 5-63. Tanaka, T, H. Kohno, R. Suzuki, Y. Yamada, S. Sugie and H. Mori. 2003. A novel inflammation-related mouse colon carcinogenesis model induced by azoxymethane and dextran sodium sulfate. Cancer Sci. 94: 965-973. Tenesa, A. and M. G. Dunlop. 2009. New insights into the aetiology of colorectal cancer from genome-wide association studies. Nat. Rev. Genet. 10: 353-358. Terzic´, J., S. Grivennikov, E. Karin and M. Karin. 2010. Inflammation and colon cancer. Gastroenterology 138: 2101-2114. Thaker, A. I., A. Shaker, M. S. Rao and M. A. Ciorba.2012. Modeling colitis-associated cancer with azoxymethane (AOM) and dextran sulfate sodium (DSS). J. Vis. Exp. 67: e4100. Tian, X., Z. Liu, B. Niu, J. Zhang, T. K. Tan, S. R. Lee, Y. Zhao, D. C. Harris and G. Zheng. 2011. E-cadherin/β-catenin complex and the epithelial barrier. J. Biomed. Biotechnol. 2011: 567305. Tsai, Y. T., P. C. Cheng and T. M. Pan. 2010. Immunomodulating activity of Lactobacillus paracasei subsp. paracasei NTU 101 in enterohemorrhagic Escherichia coli O157H7-infected mice. J. Agric. Food Chem. 58: 11265-11272. Uronis, J. M., J. C. Arthur, T. Keku, A. Fofor, I. M. Carroll, M. L. Cruz, C. B. Appleyard and C. Jobin. 2011. Gut microbial diversity is reduced by the probiotic VSL#3 and correlates with decreased TNBS-induced colitis. Inflamm. Bowel Dis. 17: 289-297. Waldherr, F. W., V. M. Doll, D. Meissner and R. F. Vogel. 2010. Identification and 84 characterization of a glucan-producing enzyme from Lactobacillus hilgardii TMW 1.828 involved in granule formation of water kefir. Food Microbiol. 27: 672-678. Wirtz, S., C. Neufert, B. Weigmann and M. F. Neurath. 2007. Chemically induced mouse models of intestinal inflammation. Nat. Protoc. 2: 541-546. Zenonos, K. and K. Kyprianou. 2013. RAS signaling pathways, mutations and their role in colorectal cancer. World J. Gastrointest. Oncol. 5: 97-101. Zhu, L., P. Gibson, D. S. Currle, Y. Tong, R. J. Richardson, I. T. Bayazitov, H. Poppleton, S. Zakaharenko, D. W. Elliton and R. J. Gilbertson. 2009. Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature 457: 603–607. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53637 | - |
| dc.description.abstract | 益生菌近年已被做為改善不同腸胃性功能障礙的替代性療法。Lactobacillus mali 為本實驗室先前自糖液克弗爾中分離而出之潛力益生菌菌株,於體外和體內試驗中皆表現明顯的抗腸炎功效。本試驗之目的為探討Lb. mali 改善腸道腸炎疾病之功效,包含預防出血性大腸桿菌O157:H7 感染以及減緩腸炎相關癌症之發展。第一階段試驗探討Lb. mali 對出血性大腸桿菌O157: H7 所誘發腸炎小鼠模型的預防功效。試驗選用八週齡之Balb/c 小鼠依據組別每日分別給予磷酸鹽緩衝生理食鹽水、不同劑量之乳酸桿菌 (108 CFU/隻 和 5 × 108 CFU/隻) 並持續兩周,試驗後七天進行誘導出血性大腸桿菌O157: H7,分別於第0、4、7 天給予出血性大腸桿菌 (2 ×109 CFU/200μL)以誘發小鼠感染腸炎。結果顯示,正對照組有75%小鼠糞便溶血反應檢測為陽性;對比之下,餵予低劑量和高劑量乳酸桿菌之小鼠,僅有14%結果為陽性。除此之外,小鼠給予Lb. mali 能有效避免出血性大腸桿菌O157: H7 入侵肝臟和脾臟。迴腸組織切片也顯示Lb. mali 能藉由維持腸道上皮屏障完整而降低出血性大腸桿菌之感染。然而血清中免疫球蛋白(immunoglobulin, Ig)
包含IgG, IgM 及IgA 的含量並無顯著差異。 試驗進一步研究Lb. mali 抗腸炎功效是否具有減緩腸炎相關癌症發展之機能性。體外試驗使用人類結腸癌細胞株Caco-2 進行細胞聚集試驗。結果指出,與益生菌株共培養之細胞有較高細胞黏著性表現; 在動物試驗, 使用八週齡C57BL/6JNarl 小鼠,依據組別每日給予不同劑量Lb. mali (2 ×108 CFU/隻和109 CFU/ 隻) 。持續2 週後, 小鼠以單次腹腔注射前致癌物質氧化偶氮甲烷 (azoxymethane, AOM ) (200μg/20g),7 天後替換飲用水至2%硫酸葡聚糖納鹽 (dextran sodium sulfate, DSS)誘導潰瘍性結腸炎7 天,而後置換滅菌飲用水14 日,DSS 循環共進行3 次以誘導腸炎相關癌症。結果顯示,相較於正對照組,小鼠給予Lb. mali 可減緩潰瘍性結腸炎之臨床症狀,包含減緩體重下降、結腸長度以及較低的直腸出血評分。結腸組織切片亦指出餵食益生菌之小鼠,其良性腫瘤比例與負對照組相比有提高之趨勢。除此之外,藉由結腸組織切片之免疫組織化學染色發現給予Lb. mali 後,結腸癌之細胞增生因子 (proliferating cell nuclear antigen,PCNA) 表現量有下降之趨勢但各組組織切片皆缺乏腫瘤抑制蛋白p53 之表現。 綜觀上述,本試驗顯示Lb. mali 藉由其減緩腸道發炎之功效,而具有改善出血性大腸桿菌感染和減緩腸炎相關癌症發展之潛力。然而,有關其詳細之抗腸炎之機制仍須進一步探討。 | zh_TW |
| dc.description.abstract | Probiotics has been used as alternative food to ameliorate various gastrointestinal disorders. Lactobacillus mali (Lb. mali), one of the potential probiotics isolated from sugary kefir of our laboratory previously, has been shown clearly anti-colitis effects on both in vitro and in vivo assays. The aim of this study was to investigate the effects of Lactobacillus mali on ameliorating colitis disease, including enterohemorrhagic Escherichia coli (EHEC) O157:H7-induced colitis, a group of Shiga toxin-producing foodborne pathogens, and on lowering the risk of the chronic colitis-associated cancer (CAC).
For EHEC infection animal model, eight-week-old Balb/c mice were oral administrated daily with either phosphate buffered saline or different dosages of Lb. mali (108 and 5 × 108 CFU) for 7 days. This was followed by intragastric challenges with EHEC O157:H7 (2 × 109 CFU), which were conducted at day 0, 4, and 7 after the end of Lb. mali treatment. The results showed that the mice daily administrated with Lb. mali could reduce the symptoms of EHEC infection. The fecal occult blood tests showed that 6 out of 8 of the mice (75%) in the EHEC infection group had fecal occult blood present, whereas only 2 out of 14 (14%) were found to have fecal occult blood present in the Lb. mali pretreatment group. Also, pre-treatment of Lb. mali significantly protected the liver and spleen from EHEC invasion in mice. Further, histological analysis showed that Lb. mali could protect intestinal epithelial monolayer against EHEC infected colitis. However, the immunoglobulin (Ig) in serum, including IgG, IgM, and IgA, did not show significant differences among the groups. To further investigate the anti-colitis effects of Lb. mali on decreasing the onset of CAC, human epithelial colorectal adenocarcinoma Caco-2 cell were used for cell aggregation assay in vitro. The results indicated that cell treated with probiotics showed better cell adhesion abilities. In animal model, eight-week-old C57BL/6JNarl mice were oral administrated daily with either phosphate buffered saline as a control, and or different dosages of Lb. mali (2 × 108 and 109 CFU) for 14 days. At the beginning of experiment, mice were given a single intraperitoneal injection with azoxymethane (10 mg/kg). After 7 days, they were treated with 2% dextran sodium sulfate (DSS) solution in drinking water for consecutive 7 days followed by autoclaved water for 14 days. DSS cycle was repeated for 3 times. During the DSS-induced period, fecal occult blood was measured by a scoring system for evaluating colitis severity. After scarifying, colonic and other organ tissues were collected for analysis. The results showed that mice treated with Lb. mali maintained longer colon length than non-treated groups. Similarly, hematoxylin and eosin staining colonic tissue showed less infiltration in Lb. mali groups compared with non-treated groups. In addition, the expression level of proliferating cell nuclear antigen is lower in Lb. mali-treated group. In conclusion, our studies suggested that Lb. mali have the potential to ameliorate the EHEC infection and attenuate the development of CAC due to their abilities to reduce the level of intestinal inflammation. However, further investigations of the possible mechanisms on probiotics in modulating colitis diseases are necessary. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:26:45Z (GMT). No. of bitstreams: 1 ntu-104-R02626026-1.pdf: 3498960 bytes, checksum: 0cafdcae85534f84837e177f6240fb62 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 壹、文獻探討……………………………………………………………………………1
第一節:出血性大腸桿菌 (Enterohemorrhagic Escherichia coli, EHEC)…….….1 一、病原性大腸桿菌之介紹………………………………………………….1 (一) 腸內病原性大腸桿菌…………………………………………….....1 (二) 出血性大腸桿菌………………………………………………….....1 (三) 產腸毒素性大腸桿菌…………………………………………….....2 (四) 腸聚集性大腸桿菌……………………………………………….....2 (五) 腸侵襲性大腸桿菌……………………………………………….....2 (六) 漫黏附性大腸桿菌……………………………………………….....2 二、出血性大腸桿菌O157:H7………………………………………………4 (一) 汙染來源…………………………………………………………...4 (二) 致病影響……………………………………………..……………...4 (三) 益生菌……………………………………………………………...5 第二節:結腸炎相關癌症 (Colitis-associated cancer, CAC)……………………...8 一、結腸炎相關癌症定義…………………………………………………..8 二、腸炎相關癌症之病因………………………………………………...10 (一) 細胞誘發路徑與腸炎相關癌症誘發之關聯性……………….....10 (二) 腸道免疫與結腸直腸癌之關聯……………………………….....16 (三) 誘導腸炎相關癌症之動物模型…………………………………...20 第三節:Lactobacillus mali………………………………………...……………..21 一、Lactobacillus mali (Lb. mali) ……….………………………………..…21 二、Lactobacillus mali 之機能性……………………………………….…..21 貳、材料與方法………………………………………………………………………...23 第一節:Lactobacillus mali 對預防小鼠出血性大腸桿菌感染之功效評估….23 一、實驗材料………………………………………………………………...23 (一) 試驗菌株與微生物培養基…………………………………..…...23 (二) 實驗動物…………………………………………………….........23 二、實驗方法…………………………………………………………….....24 (一) 菌株之活化 …………………………………………………….....24 (二) Lb. mali 和出血性大腸桿菌O157:H7 菌液配製……………….24 (三) 誘導出血性大腸桿菌O157:H7 感染模式………………………...24 第二節:Lb. mali 減緩腸炎相關癌症發展之功效評估…………………………29 一、實驗材料……………………………………………………………….29 (一) 試驗菌株……………………………………………………….....29 (二) 實驗細胞……………………………………………………….....29 (三) 實驗動物……………………………………………………….....29 (四) 化學致癌物……………………………………………………….30 (五) 免疫組織化學染色法試劑……………………..…………..……...30 二、實驗方法……………………………………………………………….30 (一) 細胞存活試驗 (cell viability assay)……………………..……….30 (二) 細胞聚集試驗 (cell aggregation assay)………………………….31 (三) Lb. mali 針對腸炎相關癌症模式建立與功效評估……….…….32 第三節:統計分析………………………………………………………………..37 參、結果與討論………………………………………………………………………...38 第一節:Lactobacillus mali 對出血性大腸桿菌之預防功效評估……………..….38 一、Lb. mali 改善出血性大腸桿菌感染之小鼠症狀…………………..38 二、Lb. mali 保護出血性大腸桿菌感染小鼠之腸道上皮形態完整性……39 三、Lb. mali 減少出血性大腸桿菌之轉移和減少血清志賀毒之總量......45 四、Lb. mali 提升黏膜免疫球蛋白之分泌量……………………………..48 第二節:Lactobacillus mali 減緩腸炎相關癌症發展之功效……..……………….51 一、 Lb. mali 和Lb. kefiranofaciens M1對細胞存活率之影響.....................51 二、腸炎相關癌症誘導模型及臨床症狀評估…………….....……………53 三、結腸癌小鼠血清中細胞激素之影響……………….……………….…60 四、AOM/DSS 小鼠動物模型結腸癌發展…………………………….….62 第三節:Lb. mali 和Lb. kefiranofaciens M1 減緩腸炎相關癌症發展之可能機…65 一、 Lb. mali 和Lb. kefiranofaciens M1對細胞與細胞間黏著性之影響….65 二、AOM/DSS 小鼠模型中糞便腸道菌相之比例………………………..69 三、 Lb. mali 和Lb. kefiranofaciens M1減緩細胞辨識標記分泌量探討….71 肆、結論………………………………………………………………………………...75 伍、參考文獻………………………………………………………………………….76 | |
| dc.language.iso | zh-TW | |
| dc.subject | 益生菌 | zh_TW |
| dc.subject | 出血性大腸桿菌 | zh_TW |
| dc.subject | 腸炎相關癌症 | zh_TW |
| dc.subject | Lactobacillus mali | zh_TW |
| dc.subject | Enterohemorrhagic Escherichia coli | en |
| dc.subject | Lactobacillus mali | en |
| dc.subject | Probiotics | en |
| dc.subject | Colitis-associated cancer | en |
| dc.title | 探討Lactobacillus mali改善腸炎疾病之功效 | zh_TW |
| dc.title | Investigation of the effects of Lactobacillus mali
on ameliorating colitis disease | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 潘子明(Tzu-Ming Pan),許炯偉(Jong-Wei Hsu),劉?睿(Je-Ruei Liu),陳彥伯(Yen-Po Chen) | |
| dc.subject.keyword | 益生菌,Lactobacillus mali,出血性大腸桿菌,腸炎相關癌症, | zh_TW |
| dc.subject.keyword | Probiotics,Lactobacillus mali,Enterohemorrhagic Escherichia coli,Colitis-associated cancer, | en |
| dc.relation.page | 84 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-05 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
| 顯示於系所單位: | 動物科學技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 3.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
