請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53632完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 管永恕 | |
| dc.contributor.author | Bo-Tsung Wu | en |
| dc.contributor.author | 吳柏宗 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:26:40Z | - |
| dc.date.available | 2015-08-06 | |
| dc.date.copyright | 2015-08-06 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-04 | |
| dc.identifier.citation | Aberg, T., X.P. Wang, J.H. Kim, T. Yamashiro, M. Bei, R. Rice, H.M. Ryoo, and I. Thesleff. 2004. Runx2 mediates FGF signaling from epithelium to mesenchyme during tooth morphogenesis. Dev Biol. 270:76-93.
Aman, A., and T. Piotrowski. 2008. Wnt/beta-catenin and Fgf signaling control collective cell migration by restricting chemokine receptor expression. Dev Cell. 15:749-761. Baarsma, H.A., M. Konigshoff, and R. Gosens. 2013. The WNT signaling pathway from ligand secretion to gene transcription: molecular mechanisms and pharmacological targets. Pharmacol Ther. 138:66-83. Baldridge, D., O. Shchelochkov, B. Kelley, and B. Lee. 2010. Signaling pathways in human skeletal dysplasias. Annu Rev Genomics Hum Genet. 11:189-217. Banziger, C., D. Soldini, C. Schutt, P. Zipperlen, G. Hausmann, and K. Basler. 2006. Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell. 125:509-522. Bartscherer, K., and M. Boutros. 2008. Regulation of Wnt protein secretion and its role in gradient formation. EMBO Rep. 9:977-982. Bartscherer, K., N. Pelte, D. Ingelfinger, and M. Boutros. 2006. Secretion of Wnt ligands requires Evi, a conserved transmembrane protein. Cell. 125:523-533. Bei, M., and R. Maas. 1998. FGFs and BMP4 induce both Msx1-independent and Msx1-dependent signaling pathways in early tooth development. Development. 125:4325-4333. Belenkaya, T.Y., Y. Wu, X. Tang, B. Zhou, L. Cheng, Y.V. Sharma, D. Yan, E.M. Selva, and X. Lin. 2008. The retromer complex influences Wnt secretion by recycling wntless from endosomes to the trans-Golgi network. Dev Cell. 14:120-131. Berghmans, S., R.D. Murphey, E. Wienholds, D. Neuberg, J.L. Kutok, C.D. Fletcher, J.P. Morris, T.X. Liu, S. Schulte-Merker, J.P. Kanki, R. Plasterk, L.I. Zon, and A.T. Look. 2005. tp53 mutant zebrafish develop malignant peripheral nerve sheath tumors. Proc Natl Acad Sci U S A. 102:407-412. Brault, V., R. Moore, S. Kutsch, M. Ishibashi, D.H. Rowitch, A.P. McMahon, L. Sommer, O. Boussadia, and R. Kemler. 2001. Inactivation of the beta-catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development. Development. 128:1253-1264. Chi, C.L., S. Martinez, W. Wurst, and G.R. Martin. 2003. The isthmic organizer signal FGF8 is required for cell survival in the prospective midbrain and cerebellum. Development. 130:2633-2644. Ching, W., H.C. Hang, and R. Nusse. 2008. Lipid-independent secretion of a Drosophila Wnt protein. J Biol Chem. 283:17092-17098. Choe, C.P., A. Collazo, A. Trinh le, L. Pan, C.B. Moens, and J.G. Crump. 2013. Wnt-dependent epithelial transitions drive pharyngeal pouch formation. Dev Cell. 24:296-309. Church, V., T. Nohno, C. Linker, C. Marcelle, and P. Francis-West. 2002. Wnt regulation of chondrocyte differentiation. J Cell Sci. 115:4809-4818. Cornett, B., J. Snowball, B.M. Varisco, R. Lang, J. Whitsett, and D. Sinner. 2013. Wntless is required for peripheral lung differentiation and pulmonary vascular development. Dev Biol. 379:38-52. Cuevas, P., J. Burgos, and A. Baird. 1988. Basic fibroblast growth factor (FGF) promotes cartilage repair in vivo. Biochem Biophys Res Commun. 156:611-618. Curtin, E., G. Hickey, G. Kamel, A.J. Davidson, and E.C. Liao. 2011. Zebrafish wnt9a is expressed in pharyngeal ectoderm and is required for palate and lower jaw development. Mech Dev. 128:104-115. Das, S., S. Yu, R. Sakamori, E. Stypulkowski, and N. Gao. 2012. Wntless in Wnt secretion: molecular, cellular and genetic aspects. Front Biol (Beijing). 7:587-593. David, N.B., L. Saint-Etienne, M. Tsang, T.F. Schilling, and F.M. Rosa. 2002. Requirement for endoderm and FGF3 in ventral head skeleton formation. Development. 129:4457-4468. Eaton, S. 2008. Retromer retrieves wntless. Dev Cell. 14:4-6. Franch-Marro, X., F. Wendler, S. Guidato, J. Griffith, A. Baena-Lopez, N. Itasaki, M.M. Maurice, and J.P. Vincent. 2008. Wingless secretion requires endosome-to-Golgi retrieval of Wntless/Evi/Sprinter by the retromer complex. Nat Cell Biol. 10:170-177. Fu, J., M. Jiang, A.J. Mirando, H.M. Yu, and W. Hsu. 2009. Reciprocal regulation of Wnt and Gpr177/mouse Wntless is required for embryonic axis formation. Proc Natl Acad Sci U S A. 106:18598-18603. Garnett, A.T., T.A. Square, and D.M. Medeiros. 2012. BMP, Wnt and FGF signals are integrated through evolutionarily conserved enhancers to achieve robust expression of Pax3 and Zic genes at the zebrafish neural plate border. Development. 139:4220-4231. Goodman, R.M., S. Thombre, Z. Firtina, D. Gray, D. Betts, J. Roebuck, E.P. Spana, and E.M. Selva. 2006. Sprinter: a novel transmembrane protein required for Wg secretion and signaling. Development. 133:4901-4911. Goudevenou, K., P. Martin, Y.J. Yeh, P. Jones, and F. Sablitzky. 2011. Def6 is required for convergent extension movements during zebrafish gastrulation downstream of Wnt5b signaling. PLoS One. 6:e26548. Gregory-Evans, C.Y., M. Moosajee, M.D. Hodges, D.S. Mackay, L. Game, N. Vargesson, A. Bloch-Zupan, F. Ruschendorf, L. Santos-Pinto, G. Wackens, and K. Gregory-Evans. 2007. SNP genome scanning localizes oto-dental syndrome to chromosome 11q13 and microdeletions at this locus implicate FGF3 in dental and inner-ear disease and FADD in ocular coloboma. Hum Mol Genet. 16:2482-2493. Hanaoka, R., Y. Ohmori, K. Uyemura, T. Hosoya, Y. Hotta, T. Shirao, and H. Okamoto. 2004. Zebrafish gcmb is required for pharyngeal cartilage formation. Mech Dev. 121:1235-1247. Heisenberg, C.P., M. Brand, Y.J. Jiang, R.M. Warga, D. Beuchle, F.J. van Eeden, M. Furutani-Seiki, M. Granato, P. Haffter, M. Hammerschmidt, D.A. Kane, R.N. Kelsh, M.C. Mullins, J. Odenthal, and C. Nusslein-Volhard. 1996. Genes involved in forebrain development in the zebrafish, Danio rerio. Development. 123:191-203. Heisenberg, C.P., M. Tada, G.J. Rauch, L. Saude, M.L. Concha, R. Geisler, D.L. Stemple, J.C. Smith, and S.W. Wilson. 2000. Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature. 405:76-81. Helms, J.A., D. Cordero, and M.D. Tapadia. 2005. New insights into craniofacial morphogenesis. Development. 132:851-861. Herzog, W., C. Sonntag, S. von der Hardt, H.H. Roehl, Z.M. Varga, and M. Hammerschmidt. 2004. Fgf3 signaling from the ventral diencephalon is required for early specification and subsequent survival of the zebrafish adenohypophysis. Development. 131:3681-3692. Huang, S., X. Zhu, Y. Liu, Y. Tao, G. Feng, L. He, X. Guo, and G. Ma. 2012. Wls is expressed in the epidermis and regulates embryonic hair follicle induction in mice. PLoS One. 7:e45904. Jaszai, J., F. Reifers, A. Picker, T. Langenberg, and M. Brand. 2003. Isthmus-to-midbrain transformation in the absence of midbrain-hindbrain organizer activity. Development. 130:6611-6623. Jentzsch, K.D., G. Wellmitz, G. Heder, E. Petzold, P. Buntrock, and P. Oehme. 1980. A bovine brain fraction with fibroblast growth factor activity inducing articular cartilage regeneration in vivo. Acta Biol Med Ger. 39:967-971. Jiang, M., W.Y. Ku, J. Fu, S. Offermanns, W. Hsu, and J. Que. 2013. Gpr177 regulates pulmonary vasculature development. Development. 140:3589-3594. Jin, J., M. Morse, C. Frey, J. Petko, and R. Levenson. 2010. Expression of GPR177 (Wntless/Evi/Sprinter), a highly conserved Wnt-transport protein, in rat tissues, zebrafish embryos, and cultured human cells. Dev Dyn. 239:2426-2434. Kelly, G.M., P. Greenstein, D.F. Erezyilmaz, and R.T. Moon. 1995. Zebrafish wnt8 and wnt8b share a common activity but are involved in distinct developmental pathways. Development. 121:1787-1799. Kimmel, C.B., C.T. Miller, and C.B. Moens. 2001. Specification and morphogenesis of the zebrafish larval head skeleton. Dev Biol. 233:239-257. Kuan, Y.S., H.H. Yu, C.B. Moens, and M.E. Halpern. 2007. Neuropilin asymmetry mediates a left-right difference in habenular connectivity. Development. 134:857-865. Lang, M.R., L.A. Lapierre, M. Frotscher, J.R. Goldenring, and E.W. Knapik. 2006. Secretory COPII coat component Sec23a is essential for craniofacial chondrocyte maturation. Nature genetics. 38:1198-1203. Lele, Z., J. Bakkers, and M. Hammerschmidt. 2001. Morpholino phenocopies of the swirl, snailhouse, somitabun, minifin, silberblick, and pipetail mutations. Genesis. 30:190-194. Liu, F., S. Kohlmeier, and C.Y. Wang. 2008. Wnt signaling and skeletal development. Cell Signal. 20:999-1009. Logan, C.Y., and R. Nusse. 2004. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 20:781-810. Maruyama, E.O., H.M. Yu, M. Jiang, J. Fu, and W. Hsu. 2013a. Gpr177 deficiency impairs mammary development and prohibits Wnt-induced tumorigenesis. PLoS One. 8:e56644. Maruyama, T., M. Jiang, and W. Hsu. 2013b. Gpr177, a novel locus for bone mineral density and osteoporosis, regulates osteogenesis and chondrogenesis in skeletal development. J Bone Miner Res. 28:1150-1159. Matsui, T., A. Raya, Y. Kawakami, C. Callol-Massot, J. Capdevila, C. Rodriguez-Esteban, and J.C. Izpisua Belmonte. 2005. Noncanonical Wnt signaling regulates midline convergence of organ primordia during zebrafish development. Genes Dev. 19:164-175. Meyers, E.N., M. Lewandoski, and G.R. Martin. 1998. An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination. Nature genetics. 18:136-141. Myung, P.S., M. Takeo, M. Ito, and R.P. Atit. 2013. Epithelial Wnt ligand secretion is required for adult hair follicle growth and regeneration. J Invest Dermatol. 133:31-41. Nissen, R.M., J. Yan, A. Amsterdam, N. Hopkins, and S.M. Burgess. 2003. Zebrafish foxi one modulates cellular responses to Fgf signaling required for the integrity of ear and jaw patterning. Development. 130:2543-2554. Ornitz, D.M., and P.J. Marie. 2002. FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev. 16:1446-1465. Passos-Bueno, M.R., W.R. Wilcox, E.W. Jabs, A.L. Sertie, L.G. Alonso, and H. Kitoh. 1999. Clinical spectrum of fibroblast growth factor receptor mutations. Hum Mutat. 14:115-125. Port, F., M. Kuster, P. Herr, E. Furger, C. Banziger, G. Hausmann, and K. Basler. 2008. Wingless secretion promotes and requires retromer-dependent cycling of Wntless. Nat Cell Biol. 10:178-185. Pronobis, M.I., and M. Peifer. 2012. Wnt signaling: the many interfaces of beta-catenin. Curr Biol. 22:R137-139. Ramel, M.C., G.R. Buckles, K.D. Baker, and A.C. Lekven. 2005. WNT8 and BMP2B co-regulate non-axial mesoderm patterning during zebrafish gastrulation. Dev Biol. 287:237-248. Rauch, G.J., M. Hammerschmidt, P. Blader, H.E. Schauerte, U. Strahle, P.W. Ingham, A.P. McMahon, and P. Haffter. 1997. Wnt5 is required for tail formation in the zebrafish embryo. Cold Spring Harb Symp Quant Biol. 62:227-234. Reinhold, M.I., R.M. Kapadia, Z. Liao, and M.C. Naski. 2006. The Wnt-inducible transcription factor Twist1 inhibits chondrogenesis. J Biol Chem. 281:1381-1388. Rudnicki, J.A., and A.M. Brown. 1997. Inhibition of chondrogenesis by Wnt gene expression in vivo and in vitro. Dev Biol. 185:104-118. Schilling, T.F., and C.B. Kimmel. 1997. Musculoskeletal patterning in the pharyngeal segments of the zebrafish embryo. Development. 124:2945-2960. Stulberg, M.J., A. Lin, H. Zhao, and S.A. Holley. 2012. Crosstalk between Fgf and Wnt signaling in the zebrafish tailbud. Dev Biol. 369:298-307. Walshe, J., and I. Mason. 2003. Fgf signalling is required for formation of cartilage in the head. Dev Biol. 264:522-536. Westfall, T.A., R. Brimeyer, J. Twedt, J. Gladon, A. Olberding, M. Furutani-Seiki, and D.C. Slusarski. 2003. Wnt-5/pipetail functions in vertebrate axis formation as a negative regulator of Wnt/beta-catenin activity. J Cell Biol. 162:889-898. Willert, K., and R. Nusse. 2012. Wnt proteins. Cold Spring Harb Perspect Biol. 4:a007864. Yan, Y.L., C.T. Miller, R.M. Nissen, A. Singer, D. Liu, A. Kirn, B. Draper, J. Willoughby, P.A. Morcos, A. Amsterdam, B.C. Chung, M. Westerfield, P. Haffter, N. Hopkins, C. Kimmel, and J.H. Postlethwait. 2002. A zebrafish sox9 gene required for cartilage morphogenesis. Development. 129:5065-5079. Yang, P.T., M.J. Lorenowicz, M. Silhankova, D.Y. Coudreuse, M.C. Betist, and H.C. Korswagen. 2008. Wnt signaling requires retromer-dependent recycling of MIG-14/Wntless in Wnt-producing cells. Dev Cell. 14:140-147. Yang, Y., L. Topol, H. Lee, and J. Wu. 2003. Wnt5a and Wnt5b exhibit distinct activities in coordinating chondrocyte proliferation and differentiation. Development. 130:1003-1015. Zhong, Z., C.R. Zylstra-Diegel, C.A. Schumacher, J.J. Baker, A.C. Carpenter, S. Rao, W. Yao, M. Guan, J.A. Helms, N.E. Lane, R.A. Lang, and B.O. Williams. 2012. Wntless functions in mature osteoblasts to regulate bone mass. Proc Natl Acad Sci U S A. 109:E2197-2204. Zhu, X., P. Zhao, Y. Liu, X. Zhang, J. Fu, H.M. Ivy Yu, M. Qiu, Y. Chen, W. Hsu, and Z. Zhang. 2013. Intra-epithelial requirement of canonical Wnt signaling for tooth morphogenesis. J Biol Chem. 288:12080-12089. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53632 | - |
| dc.description.abstract | Wnt蛋白由其所製造的細胞中,分泌並結合至目標細胞後的訊息傳導,在體軸生成、神經發育與器官生成中扮演著非常重要的角色。而Wntless (Wls)則是在少數被發現的膜蛋白中,被研究出具有調控Wnt分泌進而活化Wnt訊號傳遞的膜蛋白。儘管抑制Wnt訊號傳遞會造成各種斑馬魚早期胚胎發育的缺陷,但即便是抑制了來自母體中Wls的表現,也無法引起失去各種Wnt訊號所產生的集合性的缺陷。因此,我認為Wls在斑馬魚早期胚胎的發育中,對於Wnt的調控是具有選擇性的。在已知的研究中,Wnts和Fgfs被證實具有調控早期發育的功能。但對於Wnt或Fgf在局部的組織中的作用、或是其兩者之間是否有相互的調控關係,並沒有太多相關且詳細的研究。因此,在我一開始的研究中,首先發現在Wls的突變種 (mutants)、morphants和Wnt5b的突變種的斑馬魚中,Fgf3的表現量是有明顯的下降的,但在wnt9a和wnt11的morphants中則是沒有改變的。除此之外,利用顯微注射的方式將全長的fgf3 mRNA打入斑馬魚胚胎中,則可以解救Wls和Wnt5b突變所引起的下顎軟骨缺陷,但fgf8則否。另外在免疫組織螢光染色的結果中,我也發現Wnt5b的分泌在受精後的48 小時是受到Wls所調控的,但Wnt11則否。這實驗結果指出在斑馬魚早期胚胎發育中,Wls並非參與了所有Wnt的分泌。最後,在我的實驗中證實Wls是透過調控細胞增生的方式來影響下顎軟骨的發育,而不是透過調控細胞凋亡的途徑。因此,我得到的結論是:斑馬魚下顎軟骨的發育,是Wnt5b經過Wls的調控而分泌出其製造細胞,進而增加Fgf3的表現來調控細胞增生,以達到下顎軟骨正常發育之目的。 | zh_TW |
| dc.description.abstract | Secreted Wnt molecules play a pivotal role in cell-cell communications during the development of multicellular organisms. The transmembrane protein Wntless (Wls) is one of the few proteins that are identified to control the secretion of active Wnt signaling. Although loss of Wnt signaling resulted in diverse developmental defects during zebrafish embryonic development, loss of maternal or zygotic Wls activity in embryos caused no obvious collective loss-of-Wnt phenotypes, suggesting that Wls exists selectivity on different Wnt molecules during zebrafish embryonic development. To date, Wnts and Fgfs have been reported to regulate various tissues development, but relatively little is known about how regional Wnt or Fgf activities are established and how they interact in any given developmental event. Here, I have investigated the Wnt-mediated craniofacial cartilage development in zebrafish and found that fgf3 expression is down-regulated in wls mutants and wls morpholino (MO)-injected embryos (morphants) and in wnt5b mutants, but no fgf3 expression alternation is observed in wnt9a and wnt11 morphants. In addition, introducing full-length fgf3 mRNAs but not fgf8 can rescue the Wls or Wnt5b deficiency-induced jaw cartilage defects. Immuno-histochemical staining also revealed that endogenous Wnt5b, but not Wnt11, required Wls for its secretion during the jaw development at 48 hpf in zebrafish embryos, indicating that Wls is not involved in every Wnt secretion events in zebrafish cells. Moreover, cell proliferation was affected while apoptosis was normal in the developing jaw of wls morphants. Together, Wnt5b requires Wls for secretion and regulates the proliferation of chondrogenic cells through fine-tuning the expression of fgf3 during embryonic jaw cartilage development. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:26:40Z (GMT). No. of bitstreams: 1 ntu-104-D97b46008-1.pdf: 17345835 bytes, checksum: a3d63f69fec9a36b76ef724d8a62d758 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 誌謝 I
List of Abbreviations II Table of contents IV List of Figures VII List of Tables VIII 中文摘要 IX Abstract X 1. Introduction 1 1-1. Wnt signaling 1 1-2. Role of the Wntless in Wnt signaling 4 1-3. Interaction between WNT and FGF pathways 6 2. Materials and Methods 10 2-1. Zebrafish strains and maintenance 10 2-2. mRNA and antisense morpholino (MO) injection 10 2-3. Whole mount RNA in situ hybridization 11 2-4. Whole-Mount Immunohistochemistry 13 2-5. Cartilage staining and analysis 15 2-6. TUNEL assay 16 2-7. BrdU assay 18 2-8. Quantification of fgf3 expression 19 2-9. Transmission electron microscopy (TEM). 20 3. Result 21 3-1. Wntless mutants and morphants display defects associated with craniofacial development 21 3-2. wls MOs efficiently inhibit Wls expression 22 3-3. Knockdown of wls results in reduction of fgf3 mRNA expression, but not fgf8 23 3-4. A Requirement of Fgf3 for Wntless-mediated Wnt Signaling in lower jaw cartilage development 24 3-5. Microinjection fgf3 RNA can rescue the wnt5b mutant induced phenotype 26 3-6. Molecular characterization of Wntless requirement during craniofacial morphogenesis 28 3-7. Wntless is not involved in extracellular matrix trafficking. 29 3-8. Abnormal secretion of Wnt5b, but not Wnt11, from wls defective zebrafish embryonic cells 30 3-9. Both Wntless and Wnt5b control chondrogenic cell proliferation during embryonic jaw cartilage development 31 4. Discussion 33 5. Figures 40 6. Tables 54 7. Reference 56 | |
| dc.language.iso | zh-TW | |
| dc.subject | 生長因子(Fgf3) | zh_TW |
| dc.subject | 下顎軟骨 | zh_TW |
| dc.subject | Wnt5b | zh_TW |
| dc.subject | Wntless | zh_TW |
| dc.subject | 斑馬魚 | zh_TW |
| dc.subject | Fgf3 | en |
| dc.subject | Wnt5b | en |
| dc.subject | jaw cartilage | en |
| dc.subject | zebrafish | en |
| dc.subject | Wntless | en |
| dc.title | 探討Wnt5b和Wntless對於調控斑馬魚下顎軟骨發育之分子機制 | zh_TW |
| dc.title | Investigating the molecular mechanism of Wnt5b and Wntless-mediated zebrafish jaw cartilage development | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 鍾邦柱,蔡懷楨,黃銓珍,黃聲蘋 | |
| dc.subject.keyword | 斑馬魚,Wntless,生長因子(Fgf3),Wnt5b,下顎軟骨, | zh_TW |
| dc.subject.keyword | zebrafish,Wntless,Fgf3,Wnt5b,jaw cartilage, | en |
| dc.relation.page | 62 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-05 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 16.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
