請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53626
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 許輔 | |
dc.contributor.author | Wei-Chi Chen | en |
dc.contributor.author | 陳偉齊 | zh_TW |
dc.date.accessioned | 2021-06-16T02:26:34Z | - |
dc.date.available | 2020-08-16 | |
dc.date.copyright | 2015-08-16 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-04 | |
dc.identifier.citation | 葉怡真 (2006)。金針菇在醫學上的應用。食品工業,38(5):11-24。
黃文芳、劉慶茂。(1990)。金針菇栽培與利用。廣東科技出版社。 陳錦桐、石信德、陳繹年和安寶貞。(2011)。菇類產業發展研討會專刊。行政院農業委員會農業試驗所。 楊盛清、仲裡正宏。(1974)。金針菇栽培方法簡介。中國園藝,20 (3):179-183。 胡哲榮。(2006)。研究真菌類免疫調節蛋白質之免疫調節活性。中山醫學大學醫學分子毒理學研究所碩士論文。台中。 唐賽文。(1993)。真菌類免疫調節蛋白 FIP-fve 作用機制之研究。國立台灣大學醫學院生物化學暨分子生物學研究所碩士論文。臺北。 童曼華。(2008)。金針菇免疫調節蛋白 FVE 活化小鼠 T 淋巴細胞機制之研究。國立臺灣大學園藝學研究所學位論文。臺北。 張佑敏。(2011)。製備片段缺失 fve 蛋白及其功能分析。國立臺灣大學園藝學研究所碩士論文。臺北。 劉育靈。(2013)。金針菇免疫調節蛋白 FIP-fve 生物可及性之研究。國立臺灣大學園藝暨景觀學研究所碩士論文。臺北。 林瑜珊。(2014)。FIP-fve 蛋白之 N 端序列對其免疫活性之必要性。國立臺灣大學園藝暨景觀學研究所學位論文。臺北。 周鳳英。(2006)。加馬輻射照射對中藥材滅菌及成份影響評估。中醫藥年報。24(5):361-394。 袁學軍、陳忠蔭、陳光宙、陳永敢和范平傑。(2013)。不同乾燥方式和洗滌時間對靈芝活性成分影響。中國食用菌。4:19。 楊政哲。(2008)。研究靈芝多醣PSG與蛋白LZ8之免疫調節功效及成分規格標準。國立臺灣大學園藝暨景觀學研究所學位論文。臺北。 湯曉君。(2001)。金針菇免疫調節功能蛋白FIP-fve調控干擾素-γ之研究。中山醫學院毒理學研究所學位論文。臺中。 衛生福利部食品藥物管理署。(2010)。健康食品概說。<http://www.fda.gov.tw/TC/siteContent.aspx?sid=1776#.VZf9hfmqqko>。 衛生福利部食品藥物管理署。(2013)。食品化學檢驗方法之確效規範。<http://www.fda.gov.tw/TC/siteList.aspx?sid=4115 >。 Abdel-Aal, E. S. M. (2008). Effects of baking on protein digestibility of organic spelt products determined by two in vitro digestion methods. Food Sci Technol, 41(7):1282-1288. Alminger, M., Aura, A. M., Bohn, T., Dufour, C., El, S. N., Gomes, R., and Santos, C. N. (2014). In vitro models for studying secondary plant metabolite digestion and bioaccessibility. Compr Rev Food Sci F, 13(4):413-436. Amigo-Benavent, M., Clemente, A., Ferranti, P., Caira, S., and Del-Castillo, M. D. (2011). Digestibility and immunoreactivity of soybean β-conglycinin and its deglycosylated form. Food Chem, 129(4):1598-1605. Bernheimer, A. W., and Oppenheim, J. D. (1987). Some properties of flammutoxin from the edible mushroom Flammulina Velutipes. Toxicon, 25(11):1145-1152. Chang, H. H., Hsieh, K. Y., Yeh, C. H., Tu, Y. P., and Sheu, F. (2010). Oral administration of an Enoki mushroom protein FVE activates innate and adaptive immunity and induces anti-tumor activity against murine hepatocellular carcinoma. Int Immunopharmacol, 10(2):239-246. Ding, Y., Seow, S. V., Huang, C. H., Liew, L. M., Lim, Y. C., Kuo, I. C., and Chua, K. Y. (2009). Coadministration of the fungal immunomodulatory protein FIP-fve and a tumour-associated antigen enhanced antitumour immunity. Immunology, 128(1):881-894. Guimaraes, V., Drumare, M. F., Lereclus, D., Gohar, M., Lamourette, P., Nevers, M. C., and Adel-Patient, K. (2010). In vitro digestion of Cry1Ab proteins and analysis of the impact on their immunoreactivity. J Agri Food Chem, 58(5):3222-3231. Hsieh, C. W., Lan, J. L., Meng, Q., Cheng, Y. W., Huang, H. M., and Tsai, J. J. (2007). Eosinophil apoptosis induced by fungal immunomodulatory peptide-fve via reducing IL-5alpha receptor. J Formos Med Assoc, 106(1):36-43. Hsieh, K. Y., Hsu, C. I., Lin, J. Y., Tsai, C. C., and Lin, R. H. (2003). Oral administration of an edible-mushroom-derived protein inhibits the development of food-allergic reactions in mice. Clin Exp Allergy, 33(11):1595-1602. Hur, S. J., Lim, B. O., Decker, E. A., and McClements, D. J. (2011). In vitro human digestion models for food applications. Food Chem, 125(1):1-12. International Conference on Harmonisation. (2014). Harmonised tripartite guideline validation of analytical procedures: text and methodology Q2(R1). Ikekawa, T., Ikeda, Y., Yoshioka, Y., Nakanishi, K., Yokoyama, E., and Yamazaki, E. (1982). Studies on antitumor polysaccharides of Flammulina velutipes (Curt. ex Fr.) Sing.II. The structure of EA3 and further purification of EA5. J Pharmacobiodyn, 5(8):576-581. Jeurinka, P. V., Cristina Lull Noguera, C. L., Savelkoul, H. F. J., and Wichers, H. J. (2008). Immunomodulatory capacity of fungal proteins on the cytokine production of human peripheral blood mononuclear cells. Intl. Immunopharmacology, 8:1124-1133. Kamasuka, T., Momoki, Y., and Sakai, S. (1968). Antitumor activity of polysaccharide fractions prepared from some strains of basidiomycetes. Gann, 59(5):443. Kino, K., Yamashita, A., Yamaoka, K., Watanabe, J., Tanaka, S., Ko, K., Shimizu, K., and Tsunoo H. (1989). Isolated and characterization of a new immunomodulatory protein Ling Zhi-8 (LZ-8), from Ganoderma lucidium. J Biol Chem, 264:472–478. Ko, J. L., Hsu, C. I., Lin, R. H., Kao, C. L., and Lin, J. Y. (1995). A new fungal immunomodulatory protein, FIP-fve isolated from the edible mushroom, Flammulina velutipes and its complete amino acid sequence. Eur J Biochem, 228(2):244-249. Ko, J. L., Lin, S. J., Hsu, C. I., Kao, C. L., and Lin, J. Y. (1997). Molecular cloning and expression of a fungal immunomodulatory protein, FIP-fve, from Flammulina velutipes. J Formos Med Assoc, 96(7):517-524. Ko, W. C., Liu, W. C., Tsang, Y. T., and Hsieh, C. W. (2007). Kinetics of winter mushrooms (Flammulina velutipes) microstructure and quality changes during thermal processing. J Food Eng, 81(3):587-598. Komatsu, N., Terakawa, H., Nakanishi, K., and Watanabe, Y. (1963). Flammunlin, a basic protein of Flammulina velutipes with antitumor activities. J. Antibiot (Tokyo), 16:139-143. Kong, X. H., Zhang, J. C., Zhang, P. Q. (2007). Expression of FIP-fve gene in E. coli and preliminary study on its activity. Chinese J Biochem Pharm, 28:304-308. Leifa, F., Pandey, A., and Soccol, C. R. (2001). Production of Flammulina velutipes on coffee husk and coffee. Braz Arch Biol Technol, 44(2):205-212. Li, Q. Z., Wang, X. F., and Zhou, X. W. (2011). Recent status and prospects of the fungal immunomodulatory protein family. Crit Rev Biotechnol, 231(4): 365-375. Li, Y. M. (2005). Function components and health function of edible fungi. Food Sci, 26:517-521. Lin, J. Y., Jeng, T. W., Chen, C. C., Shi, G. Y., and Tung, T. C. (1973). Isolation of a new cardiotoxic protein from the edible mushroom, Volvariella volvacea. Nature, 246(5434):524-525. Lin, J. Y., Lin, Y. J., Chen, C. C., Wu, H. L., Shi, G. Y., and Jeng, T. W. (1974). Cardiotoxic protein from edible mushroom. Nature, 252:235-237. Maruyama, H., and Ikekawa, T. (2005). Combination therapy of transplanted Meth-A fibrosarcoma in BALB/c mice with protein-bound polysaccharide EA6 isolated from enokitake mushroom Flammulina velutipes (W. Curt.: Fr.) Singer and surgical excision. Int J Med Mushrooms, 7:1-12. Moreno, F. J., Mellon, F. A., Wickham, M. S., Bottrill, A. R., & Mills, E. N. (2005). Stability of the major allergen Brazil nut 2S albumin (Ber e 1) to physiologically relevant in vitro gastrointestinal digestion. FEBS J, 272(2):341-352. Otagiri, K., Ohkuma, T., Ikekawa, T., and Tanaka, S. (1983). Intensification of antitumor-immunity by protein-bound polysaccharide, EA6, derived from Flammulina velutipes (CURT. ex FR.) SING. combined with murine leukemia L1210 vaccine in animal experments. J Pharmacobio-dynamics, 6(2):96-104. Paaventhan, P., Joseph, J. S., Seow, S. V., Vaday, S., Robinson, H., Chua, K. Y., and Kolatkar, P. R. (2003). Structure of Fve, a member of the new fungal immunomodulatory protein family. J Mol Biol, 332(2):461-470. Petzold, A., Altintas, A., Andreoni, L., Bartos, A., Berthele, A., Blankenstein, M. A., and Paraskevas, G. P. (2010). Neurofilament ELISA validation. J immunological methods, 352(1):23-31. Ratti, C. (2001). Hot air and freeze-drying of high-value foods: a review. J food engineering, 49(4):311-319. Rodríguez-Roque, M. J., de Ancos, B., Sánchez-Moreno, C., Cano, M. P., Elez-Martínez, P., and Martín-Belloso, O. (2015). Impact of food matrix and processing on the in vitro bioaccessibility of vitamin C, phenolic compounds, and hydrophilic antioxidant activity from fruit juice-based beverages. J Functional Foods, 14:33-43. Ruby, M. V., Schoof, R., Brattin, W., Goldade, M., Post, G., Harnois, M., and Chappell, W. (1999). Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environmental Sci Technol, 33(21):3697-3705. Smiderle, F. R., Carbonero, E. R., Mellinger, C. G., Sassaki, G. L., Gorin, P. A., and Iacomini, M. (2006). Structural characterization of a polysaccharide and β-glucan isolated from the edible mushroom Flammulina velutipes. Phytochemistry, 67(19): 2189-2196. Stamets, P. (1993). Growing gourmet and medicinal mushrooms. (Vol. 3). Berkeley: Ten Speed Press. Su, C. F., Kuo, I. C., Chen, P. W., Huang, C. H., Seow, S. V., Chua, K. Y., and Yu, S. M. (2012). Characterization of an immunomodulatory Der p 2-FIP-fve fusion protein produced in transformed rice suspension cell culture. Transgenic research, 21(1):177-192. Tauxe, R. V. (2001). Food safety and irradiation: protecting the public from foodborne infections. Emerging infectious diseases, 7(3):516. Tomita, T., Ishikawa, D., Noguchi, T., Katayama, E., and Hashimoto, Y. (1998). Assembly of flammutoxin, a cytolytic protein from the edible mushroom Flammulina velutipes, into a pore-forming ring-shaped oligomer on the target cell. Biochem J, 333:129-137. Tomita, T., Mizumachi, Y., Chong, K., Ogawa, K., Konishi, N., Sugawara-Tomita, N., Dohmae, N., Hashimoto, Y., and Takio, K. (2004). Protein sequence analysis, cloning, and expression of flammutoxin, a pore-forming cytolysin from Flammulina velutipes. Maturation of dimeric precursor to monomeric active form by carboxyl-terminal truncation. J Biol Chem, 279(52):54161-54172. Tong, M. H., Chien, P. J., Chang, H. H., Tsai, M. J., and Sheu, F. (2008). High processing tolerances of immunomodulatory proteins in Enoki and Reishi mushrooms. J Agric Food Chem, 56(9):3160-3166. Wang, H. X., and Ng, T. B. (2000). Flammulin: a novel ribosome-inactivating protein from fruiting bodies of the winter mushroom Flammulina velutipes. Biochem Cell Biol, 78(6):699-702. Wang, P. H., Hsu, C. I., Tang, S. C., Huang, Y. L., Lin, J. Y., Ko, J. L. (2004). Fungal immunomodulatory protein from Flammulina velutipes induces interferon-γ production through p38 mitogen-activated protein kinase signaling pathway. J. Agr. Food Chem, 52:2721–2725. Watanabe, H., Narai, A., and Shimizu, M. (1999). Purification and cDNA cloning of a protein derived from Flammulina velutipes that increases the permeability of the intestinal Caco-2 cell monolayer. European J Biochemistry, 262(3):850-857. Wickham, M., Faulks, R., and Mills, C. (2009). In vitro digestion methods for assessing the effect of food structure on allergen breakdown. Molecular Nutrition Food Research, 53(8):952-958. Yang, J. H., Lin H. C., and Mau J. L. (2001). Non-volatile taste components of several commercial mushrooms. Food Chem, 72:465-471. Yoshioka, Y., Sano, T., and Ikekawa, T. (1973). Studies on antitumor polysaccharides of Flammulina velutipes (Curt. ex Fr.) Sing. I. Chem Pharm Bull (Tokyo). 21(8):1772-1176. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53626 | - |
dc.description.abstract | 金針菇含有免疫調節蛋白 FIP-fve,具有抗過敏、抗腫瘤、免疫調節等生物活性,因此金針菇具有開發為健康食品素材的潛力。健康食品的開發必須要提出功效成分的科學證據,並能管理品質,使其在食用上須安全無虞。目前 FIP-fve 沒有一套完善的分析方法,從產品開發到品管皆有困難。因此,本研究的目的為建立分析 FIP-fve 的品管指標,測定金針菇中 FIP-fve 的含量,作為產品開發和品管依據,同時評估金針菇產品在食用上的安全性,並研究 FIP-fve 的生物可及性。
第一部分,建立 HPLC 分析 FIP-fve 的方法,並予以確效,並評估專一性、線性、準確度、精密度和偵測極限。結果顯示此分析方法穩定且值得信賴,並應用於後續的分析。第二部分,研究乾燥金針菇中 FIP-fve 的含量變化,找出最適當的乾燥條件用於往後的大量生產,結果發現金針菇分別經真空冷凍乾燥、真空微波乾燥和熱風乾燥後,三者 FIP-fve 含量並無顯著差異,且在熱風乾燥時 FIP-fve 含量會隨著溫度上升而顯著的下降。第三部分,探討食用安全性,對滅菌處理及金針菇的火菇毒素 (flammutoxin, FTX) 進行研究。首先將金針菇產品以加馬輻射滅菌,發現並不影響 FIP-fve 的含量。另一方面,火菇毒素為金針菇具溶血活性的毒蛋白,實驗發現火菇毒素於冷凍乾燥的金針菇中含量最多,其次為熱風和微波乾燥,而當熱風乾燥溫度提高時火菇毒素含量亦會顯著的下降。利用小鼠紅血球測其溶血活性,發現在熱風乾燥 70℃ 後,仍具有溶血活性。為解決火菇毒素的問題,初步以 60℃ 熱水預處理 5 分鐘後再進行50℃ 熱風乾燥,可使火菇毒素含量顯著下降並保留大部分的 FIP-fve。第四部分,在個別模擬胃及腸道消化的模式,在胃蛋白酶和胰酶的作用下,FIP-fve 僅少部分被消化。使用連續式胃腸模擬消化 FIP-fve,其在胃及腸道各消化兩小時後,FIP-fve 並不會降解。綜合以上結果,本實驗對金針菇健康食品開發從品管、安全性到消化已做一全面性的研究,證明金針菇具有作為健康食品的可行性。 | zh_TW |
dc.description.abstract | Enoki mushroom was known as containing FIP-fve, a fungal immunomodulatory protein with several biological activities including anti-allergy, anti-tumor, and immunomodulation, and it showed a high potential as a good functional ingredient. The development of a successful health food product demanded the necessary requirements: (1) its ingredients should provide healthy and functional benefits with significant science evidences, (2) its functional compartments should be determined, and (3) the levels of the bio-activating compartments should be assured. Nevertheless, it lacked an appropriate analytical method available for FIP-fve analysis currently, which limited the utilization and application of enoki mushroom as a functional ingredient. Therefore, the aims of this study were to establish and to validate an analytical method as a quality control indicator of FIP-fve determination. In addition, the processing technologies to dehydrate the mushroom, to retain most of FIP-fve contents, and to eliminate the activity of hemolytic protein flammutoxin (FTX) were researched. Moreover, the bioaccessibility of FIP-fve within enoki juice and products were performed in this study.
First, we established and validated a HPLC method for FIP-fve determination. Through considering its specificity, linearity, accuracy, precision and quantitation limit, the results showed that this method was reliable and could be applied for subsequent analysis. Second, we studied the variation of FIP-fve contents in dried enoki mushroom, to figure out the best dehydration conditions for industrial production. The contents of FIP-fve showed no significant difference among vacuum freeze drying, vacuum microwave drying and hot air dehydration methods. Moreover, content of FIP-fve would be markedly dropped while the dehydration temperature was risen. Third, we investigated the processing stability of FIP-fve and FTX. Mushroom products exposed to gamma radiation presented no discernible difference in FIP-fve content. In addition, freeze dried mushroom yielded the highest level of FTX, which was followed by hot air dehydration and microwave drying, respectively. As the same as FIP-fve, content of FTX was dropped significantly while temperature rising and it was found that the hot air dehydration at 70℃ could not completely destroy the hemolytic activity of FTX. In order to provide a safe mushroom preparation, the mushrooms were preheated and treated using hot water at 60℃ before hot air dehydration at 50℃. Under this hot-water treatment, content of FTX dropped significantly and retained most of the FIP-fve levels. Forth, FIP-fve was found to be slightly degraded when using the model of mimicked stages of digestion in stomach and intestine. FIP-fve was not degraded when using the mimicked continuous gastrointestinal digestion model. In conclusion, this study made comprehensive researches of FIP-fve preparation and provided more evidences for enoki mushroom as a functional food ingredient for health food utilization. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T02:26:34Z (GMT). No. of bitstreams: 1 ntu-104-R02628206-1.pdf: 8952633 bytes, checksum: d07d8bad51e1b45171cf72710edd8bd8 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 目錄
口試委員會審定書 I 誌謝 II 摘要 IV Abstract VI 目錄 VIII 表目錄 X 圖目錄 XI 第一章 前言 1 第一節 金針菇介紹 1 第二節 金針菇免疫調節蛋白 FIP-fve 5 第三節 分析方法確效 10 第四節 生物可及性 12 第五節 研究動機與目的 13 第二章 材料與方法 15 第一節 金針菇免疫調節蛋白 FIP-fve 純化 17 第二節 SDS-PAGE 18 第三節 高效液相層析儀 (HPLC) 分析 FIP-fve 方法確效 19 第四節 金針菇分析前處理方法 22 第五節 金針菇乾燥方法 23 第六節 膠體內水解 24 第七節 火菇毒素溶血活性分析 25 第八節 體外模擬胃消化金針菇汁 26 第九節 體外模擬腸道消化金針菇汁 26 第十節 體外模擬連續胃腸道消化金針菇汁 27 第十一節 高效液相層析儀 (HPLC) 分析火菇毒素 28 第十二節 統計分析 29 第三章 結果 31 第一節 建立及確效 HPLC 分析 FIP-fve 方法 31 第二節 評估金針菇乾燥後 FIP-fve 的含量 33 第三節 金針菇素材食用安全性 34 第四節 金針菇汁中 FIP-fve 之生物可及性 37 第四章 討論 40 第一節 建立 FIP-fve 品管指標 40 第二節 金針菇乾燥加工 41 第三節 乾燥金針菇食用安全性 42 第四節 金針菇汁中 FIP-fve 之生物可及性 45 第五章 結論與未來展望 47 參考文獻 48 TABLES 57 FIGURES 64 | |
dc.language.iso | zh-TW | |
dc.title | 建立金針菇免疫調節蛋白 FIP-fve 品管指標及評估 FIP-fve 之生物可及性 | zh_TW |
dc.title | Establishment of Quality Control Indicator and Bioaccessibility Evaluation for Fungal Immunomodulatory Protein FIP-fve | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 周志輝,潘敏雄,繆希椿 | |
dc.subject.keyword | FIP-fve,分析方法確效,火菇毒素,生物可及性, | zh_TW |
dc.subject.keyword | FIP-fve,analytical method validation,flammutoxin,bioaccessibility, | en |
dc.relation.page | 83 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-08-05 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 園藝學研究所 | zh_TW |
顯示於系所單位: | 園藝暨景觀學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 8.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。