Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53616
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張恆華
dc.contributor.authorChih-Chung Hsiehen
dc.contributor.author謝執中zh_TW
dc.date.accessioned2021-06-16T02:26:26Z-
dc.date.available2017-08-16
dc.date.copyright2015-08-16
dc.date.issued2015
dc.date.submitted2015-08-05
dc.identifier.citation[1] R. R. Edelman and S. Warach, 'Magnetic resonance imaging,' New England Journal of Medicine, vol. 328, pp. 708-716, 1993.
[2] S. Millman, I. Rabi, and J. Zacharias, 'On the nuclear moments of indium,' Physical Review, vol. 53, p. 384, 1938.
[3] S. Basu, H. Zaidi, M. Houseni, G. Bural, J. Udupa, P. Acton, et al., 'Novel quantitative techniques for assessing regional and global function and structure based on modern imaging modalities: implications for normal variation, aging and diseased states,' Seminars in nuclear medicine, vol. 37, pp. 223-239, 2007.
[4] P. Dayan and L. Abbott, 'Theoretical neuroscience: computational and mathematical modeling of neural systems,' Journal of Cognitive Neuroscience, vol. 15, pp. 154-155, 2003.
[5] J. Wang, C. Vachet, A. Rumple, S. Gouttard, C. Ouziel, E. Perrot, et al., 'Multi-atlas segmentation of subcortical brain structures via the AutoSeg software pipeline,' Frontiers in neuroinformatics, vol. 8, 2014.
[6] K. O. Lim and A. Pfefferbaum, 'Segmentation of MR brain images into cerebrospinal fluid spaces, white and gray matter,' Journal of Computer Assisted Tomography, vol. 13, pp. 588-593, 1989.
[7] D. W. Shattuck, S. R. Sandor-Leahy, K. A. Schaper, D. A. Rottenberg, and R. M. Leahy, 'Magnetic resonance image tissue classification using a partial volume model,' NeuroImage, vol. 13, pp. 856-876, 2001.
[8] S. M. Smith, 'Fast robust automated brain extraction,' Human brain mapping, vol. 17, pp. 143-155, 2002.
[9] Y. Wang, J. Nie, P.-T. Yap, F. Shi, L. Guo, and D. Shen, 'Robust deformable-surface-based skull-stripping for large-scale studies,' Medical Image Computing and Computer-Assisted Intervention–MICCAI 2011, pp. 635-642, 2011.
[10] H. Tamura, S. Mori, and T. Yamawaki, 'Textural features corresponding to visual perception,' Systems, Man and Cybernetics, IEEE Transactions on, vol. 8, pp. 460-473, 1978.
[11] R. M. Haralick, K. Shanmugam, and I. H. Dinstein, 'Textural features for image classification,' Systems, Man and Cybernetics, IEEE Transactions on, pp. 610-621, 1973.
[12] M. M. Galloway, 'Texture analysis using gray level run lengths,' Computer graphics and image processing, vol. 4, pp. 172-179, 1975.
[13] J. C. Bezdek, Pattern recognition with fuzzy objective function algorithms: Kluwer Academic Publishers, 1981.
[14] N. R. Pal, K. Pal, and J. C. Bezdek, 'A mixed c-means clustering model,' Fuzzy Systems, 1997., Proceedings of the Sixth IEEE International Conference on, vol. 1, pp. 11-21, 1997.
[15] Y. H. Wang and T. L. Fu., 'Research on segmentation methods of brain using mri images.,' 2011 International Conference on Energy and Environmental Science, pp. 2382--2388, 2011.
[16] R. Stokking, K. L. Vincken, and M. A. Viergever, 'Automatic morphology-based brain segmentation (MBRASE) from MRI-T1 data,' NeuroImage, vol. 12, pp. 726-738, 2000.
[17] B. Tanoori, Z. Azimifar, A. Shakibafar, and S. Katebi, 'Brain volumetry: an active contour model-based segmentation followed by SVM-based classification,' Computers in biology and medicine, vol. 41, pp. 619-632, 2011.
[18] R. Krishnapuram and J. M. Keller, 'A possibilistic approach to clustering,' Fuzzy Systems, IEEE Transactions on, vol. 1, pp. 98-110, 1993.
[19] A. Rodriguez, 'Principles of magnetic resonance imaging,' Revista mexicana de física, vol. 50, pp. 272-286, 2004.
[20] 林口長庚影像診療科部. Available: http://www1.cgmh.org.tw/intr/intr2/c33d00/introduction.asp?La=j&itA=2&itB=9
[21] D. Marr and E. Hildreth, 'Theory of edge detection,' Proceedings of the Royal Society of London. Series B. Biological Sciences, vol. 207, pp. 187-217, 1980.
[22] J. Canny, 'A computational approach to edge detection,' Pattern Analysis and Machine Intelligence, IEEE Transactions on, pp. 679-698, 1986.
[23] R. Deriche, 'Using Canny's criteria to derive a recursively implemented optimal edge detector,' International journal of computer vision, vol. 1, pp. 167-187, 1987.
[24] R. C. Gonzalez and R. E. Woods, Digital Image Processing (3rd Edition): Prentice-Hall, Inc., 2006.
[25] S. Osher and J. A. Sethian, 'Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations,' Journal of computational physics, vol. 79, pp. 12-49, 1988.
[26] A. H. Zhuang, D. J. Valentino, and A. W. Toga, 'Skull-stripping magnetic resonance brain images using a model-based level set,' NeuroImage, vol. 32, pp. 79-92, 2006.
[27] S. Osher and R. Fedkiw, Level set methods and dynamic implicit surfaces vol. 153: Springer Science & Business Media, 2003.
[28] L. Zheng and T. Li, 'Semi-supervised hierarchical clustering,' Data Mining (ICDM), 2011 IEEE 11th International Conference on, pp. 982-991, 2011.
[29] P. Shanguo, W. Xiwu, and Z. Qigen, 'The study of EM algorithm based on forward sampling,' Electronics, Communications and Control (ICECC), 2011 International Conference on, pp. 4597-4600, 2011.
[30] J. Xie and S. Jiang, 'A simple and fast algorithm for global K-means clustering,' Education Technology and Computer Science (ETCS), 2010 Second International Workshop on, vol. 2, pp. 36-40, 2010.
[31] J. Sklansky, 'Image segmentation and feature extraction,' Systems, Man and Cybernetics, IEEE Transactions on, vol. 8, pp. 237-247, 1978.
[32] R. M. Haralick, 'Statistical and structural approaches to texture,' Proceedings of the IEEE, vol. 67, pp. 786-804, 1979.
[33] S. T. Bow, Pattern recognition and image preprocessing: CRC Press, 1992.
[34] P. Perona and J. Malik, 'Scale-space and edge detection using anisotropic diffusion,' Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 12, pp. 629-639, 1990.
[35] G. Gerig, O. Kubler, R. Kikinis, and F. A. Jolesz, 'Nonlinear anisotropic filtering of MRI data,' Medical Imaging, IEEE Transactions on, vol. 11, pp. 221-232, 1992.
[36] B. Mackiewich, 'Intracranial boundary detection and radio frequency correction in magnetic resonance images,' Citeseer, 1995.
[37] M. Bomans, K.-H. Hohne, U. Tiede, and M. Riemer, '3-D segmentation of MR images of the head for 3-D display,' Medical Imaging, IEEE Transactions on, vol. 9, pp. 177-183, 1990.
[38] A. K. Mohanty, S. Beberta, and S. K. Lenka, 'Classifying benign and malignant mass using GLCM and GLRLM based texture features from mammogram,' International Journal of Engineering Research and Applications, vol. 1, pp. 687-693, 2011.
[39] K. R. Krishnan and R. Sudhakar, 'Automatic classification of liver diseases from ultrasound images using GLRLM texture features,' in Soft Computing Applications, ed: Springer, 2013, pp. 611-624.
[40] BrainWeb: Simulated Brain Database. Available: http://brainweb.bic.mni.mcgill.ca/brainweb/
[41] Internet Brain Segmentation Repository. Available: http://www.cma.mgh.harvard.edu/ibsr/
[42] H.-H. Chang, A. H. Zhuang, D. J. Valentino, and W.-C. Chu, 'Performance measure characterization for evaluating neuroimage segmentation algorithms,' Neuroimage, vol. 47, pp. 122-135, 2009.
[43] A. Fenster and B. Chiu, 'Evaluation of segmentation algorithms for medical imaging,' Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the, pp. 7186-7189, 2005.
[44] L. R. Dice, 'Measures of the amount of ecologic association between species,' Ecology, vol. 26, pp. 297-302, 1945.
[45] LONI Test Archeive V1.0. Available: http://www.loni.usc.edu/
[46] N. R. Pal, K. Pal, J. M. Keller, and J. C. Bezdek, 'A possibilistic fuzzy c-means clustering algorithm,' Fuzzy Systems, IEEE Transactions on, vol. 13, pp. 517-530, 2005.
[47] K. I. Kim, K. Jung, S. H. Park, and H. J. Kim, 'Support vector machines for texture classification,' Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 24, pp. 1542-1550, 2002.
[48] Y. Y. Boykov and M.-P. Jolly, 'Interactive graph cuts for optimal boundary & region segmentation of objects in ND images,' Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on, vol. 1, pp. 105-112, 2001.
[49] S. A. Sadananthan, W. Zheng, M. W. Chee, and V. Zagorodnov, 'Skull stripping using graph cuts,' NeuroImage, vol. 49, pp. 225-239, 2010.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53616-
dc.description.abstract腦部磁振影像分割,又名大腦擷取或頭骨去除(Skull Stripping),是醫學影像分析的重要前處理之一。因為人類腦部的高複雜度和磁振造影(Magnetic Resonance Imaging,MRI)的多變參數影響,頭骨去除是具有相當挑戰性的。在本篇論文當中,我們提出一個利用區域紋理特徵與模糊可能性分析結合型態學的演算法。在所提出的演算法中,我們對影像每一點計算區域特徵值,分別為田村(Tamura)紋理特徵、灰階共生矩陣(Gray Level Co-Occurrence Matrix)及灰階長度矩陣(Gray Level Run-Length Matrix)特徵。田村紋理特徵使用粗糙度、對比度、方向性、線相似性、知覺性、規律性以及粗略性來代表影像的特徵值,本篇論文取前三項使用。灰階共生矩陣研究灰階值的空間相關特性,反映灰階值的分布特性,也是種常用的描述紋理方法。灰階長度矩陣紋理特徵則根據角度計算灰階值的連續長度得出特徵矩陣,再計算各種特徵值。接著使用模糊可能性分群的方法來將特徵影像(Feature image)分類。最後使用型態學對分類過後的特徵影像做處理。首先使用侵蝕處理,接著找出最大區域,由於腦接近眼睛的影像常和許多組織混在一起,若是直接找最大區域,所得出的結果將不是我們所需要的,但是腦中間切片卻可以分的十分清楚,因此我們從腦中央開始往兩端做運算,利用腦部是連續的且中間切片一定是最大的概念,取前一張影像結果作遮罩計算影像和遮罩交集的區域。再利用擴張將受侵蝕的影像復原,結尾將影像中的小洞填滿。最後我們將實驗結果與現有的兩種廣為人知的方法做比較,比較結果指出本研究所提出之演算法,在腦部分割影像網路資料庫所提供的臨床真實磁振影像的頭骨去除結果,有更好的精準度。zh_TW
dc.description.abstractSegmentation of brain tissue from non-brain tissue, also known as skull stripping, has been challenging due to the complexity of human brain structures and variable parameters of MR scanners. It is one of the most important preprocessing steps in medical image analysis. Skull stripping is often performed using a sequence of mathematical morphological operations following an initial separation of the brain from other tissues of the head. We propose a new brain segmentation algorithm that is based on a texture feature analysis, fuzzy possibilistic c-means and morphological operations. Tamura texture feature consist of six features. Gray Level Run-Length Matrices method is a comparably simple and straightforward texture analysis approach, and So does gray level co-occurrence matrix. Three methods are well-known and representative.
After computation of textures, we apply fuzzy possibilistic c-means(FPCM) for voxel clustering, which provides a labeled image for the following morphological operations.
The last step, we then apply sequence morphological operations followed by FPCM to find out the brain region. Our method starts from middle image to side because of the high accuracy in middle.
We compare our methods with two famous methods, with internet brain segmentation repository data sets. Experimental results indicated that the proposed algorithm is effectively and potential application in a wide variety of brain image segmentation.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:26:26Z (GMT). No. of bitstreams: 1
ntu-104-R02525088-1.pdf: 18140712 bytes, checksum: 7c832d4166d9de9b9f4da20d7320d81d (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 viii
表目錄 xi
符號表 xii
第1章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 4
1.3 論文架構 4
第2章 文獻探討 6
2.1 核磁共振影像 6
2.2 腦表面擷取模型 7
2.2.1 非均向性擴散濾波器 8
2.2.2 邊緣偵測 8
2.2.3 形態學處理 9
2.3 大腦擷取工具 11
2.4 水平集方法 13
第3章 研究設計與方法 15
3.1 基本觀念 15
3.1.1 分群分析 15
3.1.2 紋理分析 18
3.2 演算法流程 19
3.3 非均向性擴散濾波器 20
3.4 影像紋理特徵 21
3.4.1 田村紋理特徵 21
3.4.2 灰階共生矩陣之紋理特徵 25
3.4.3 灰階連續長度矩陣之紋理特徵 29
3.5 影像紋理特徵評估 33
3.6 模糊可能性分群法 38
3.7 形態學處理 41
第4章 實驗結果及討論 45
4.1 實驗說明 45
4.2 IBSR 影像資料庫及LONI Test Data Archive 1.0 47
4.3 結果 48
4.3.1 IBSR第一組影像資料庫 48
4.3.2 IBSR第二組影像資料庫 57
4.3.3 LONI Test Data Archive 1.0 65
第5章 結論與未來展望 72
5.1 結論 72
5.2 未來展望 73
參考文獻 74
附錄一 紋理特徵影像-IBSR 78
一之一 視窗範圍:5X5 78
灰階共生矩陣特徵影像 78
灰階連續長度矩陣特徵影像 79
田村紋理特徵影像 82
一之二 視窗範圍:7X7 83
灰階共生矩陣特徵影像 83
灰階連續長度矩陣特徵影像 84
田村紋理特徵影像 87
一之三 視窗範圍:9X9 87
灰階共生矩陣特徵影像 87
灰階連續長度矩陣特徵影像 89
田村紋理特徵影像 92
一之四 視窗範圍:11X11 92
灰階共生矩陣特徵影像 92
灰階連續長度矩陣特徵影像 93
田村紋理特徵影像 96
附錄二 紋理特徵影像-LONI 97
二之一 視窗範圍:5X5 97
灰階共生矩陣特徵影像 97
灰階連續長度矩陣特徵影像 98
田村紋理特徵影像 100
二之二 視窗範圍:7X7 100
灰階共生矩陣特徵影像 100
灰階連續長度矩陣特徵影像 101
田村紋理特徵影像 103
二之三 視窗範圍:9X9 103
灰階共生矩陣特徵影像 103
灰階連續長度矩陣特徵影像 104
田村紋理特徵影像 106
二之四 視窗範圍:11X11 106
灰階共生矩陣特徵影像 106
灰階連續長度矩陣特徵影像 107
田村紋理特徵影像 109
dc.language.isozh-TW
dc.title結合紋理特徵分析與模糊可能性分群分割腦部磁振影像zh_TW
dc.titleTexture feature analysis with fuzzy possibilistic c-means for brain MR image segmentationen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee丁肇隆,李佳翰,張瑞益
dc.subject.keyword頭骨去除,紋理特徵,影像分割,腦部,田村紋理特徵,灰階共生矩陣,灰階連續長度矩陣,模糊可能性分析,zh_TW
dc.subject.keywordSkull-stripping,texture-feature,image segmentation,brain,Tamura texture feature,GLCM,GLRLM,fuzzy possibilistic c-means,en
dc.relation.page109
dc.rights.note有償授權
dc.date.accepted2015-08-05
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
17.72 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved