Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53597
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝之真(Chih-Cheng Hsieh)
dc.contributor.authorSheng-Hung Wangen
dc.contributor.author王勝弘zh_TW
dc.date.accessioned2021-06-16T02:26:10Z-
dc.date.available2020-08-31
dc.date.copyright2015-08-31
dc.date.issued2015
dc.date.submitted2015-08-05
dc.identifier.citation1. Kaufmann, M.E., Pulsed-Field Gel Electrophoresis, in Molecular Bacteriology, A.P.J. Neil Woodford, Editor. 1998, Humana Press. p. 33-50.
2. Bakajin, O., et al., Separation of 100-kilobase DNA molecules in 10 seconds. Analytical Chemistry, 2001. 73(24): p. 6053-6056.
3. Huang, L.R., et al., A DNA prism for high-speed continuous fractionation of large DNA molecules. Nature Biotechnology, 2002. 20(10): p. 1048-1051.
4. Doyle, P.S., et al., Self-assembled magnetic matrices for DNA separation chips. Science, 2002. 295(5563): p. 2237-2237.
5. Kaji, N., et al., Separation of long DNA molecules by quartz nanopillar chips under a direct current electric field. Analytical Chemistry, 2004. 76(1): p. 15-22.
6. Ou, J., S.J. Carpenter, and K.D. Dorfman, Onset of channeling during DNA electrophoresis in a sparse ordered post array. Biomicrofluidics, 2010. 4(1).
7. Campbell, P.N., Instant notes in molecular biology; Edited by P C Turner, A G McLennan, A D Bates and M R H White. pp 307. Bios Scientific Publishers, Oxford. 1997. £13.95 ISBN 1-85996-056-1. Biochemical Education, 1998. 26(1): p. 97-97.
8. Stellwagen, E. and N.C. Stellwagen, Determining the electrophoretic mobility and translational diffusion coefficients of DNA molecules in free solution. Electrophoresis, 2002. 23(16): p. 2794-2803.
9. Smith, D.E., T.T. Perkins, and S. Chu, Dynamical scaling of DNA diffusion coefficients. Macromolecules, 1996. 29(4): p. 1372-1373.
10. Schwartz, D.C. and C.R. Cantor, SEPARATION OF YEAST CHROMOSOME-SIZED DNAS BY PULSED FIELD GRADIENT GEL-ELECTROPHORESIS. Cell, 1984. 37(1): p. 67-75.
11. Chu, G., D. Vollrath, and R.W. Davis, SEPARATION OF LARGE DNA-MOLECULES BY CONTOUR-CLAMPED HOMOGENEOUS ELECTRIC-FIELDS. Science, 1986. 234(4783): p. 1582-1585.
12. Schwartz, D.C. and M. Koval, CONFORMATIONAL DYNAMICS OF INDIVIDUAL DNA-MOLECULES DURING GEL-ELECTROPHORESIS. Nature, 1989. 338(6215): p. 520-522.
13. Horvath, J. and V. Dolnik, Polymer wall coatings for capillary electrophoresis. Electrophoresis, 2001. 22(4): p. 644-655.
14. Noolandi, J., A NEW CONCEPT FOR SEQUENCING DNA BY CAPILLARY ELECTROPHORESIS. Electrophoresis, 1992. 13(6): p. 394-395.
15. Won, J.-I., Recent advances in DNA sequencing by End-Labeled Free-Solution Electrophoresis (ELFSE). Biotechnology and Bioprocess Engineering, 2006. 11(3): p. 179-186.
16. Duffy, D.C., et al., Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Analytical Chemistry, 1998. 70(23): p. 4974-4984.
17. Martinez, A.W., et al., Diagnostics for the Developing World: Microfluidic Paper-Based Analytical Devices. Analytical Chemistry, 2010. 82(1): p. 3-10.
18. Stone, H.A. and S. Kim, Microfluidics: Basic issues, applications, and challenges. Aiche Journal, 2001. 47(6): p. 1250-1254.
19. Tabeling, P., Recent progress in the physics of microfluidics and related biotechnological applications. Current Opinion in Biotechnology, 2014. 25: p. 129-134.
20. Karlinsey, J.M., Sample introduction techniques for microchip electrophoresis: A review. Analytica Chimica Acta, 2012. 725: p. 1-13.
21. Harrison, D.J., et al., CAPILLARY ELECTROPHORESIS AND SAMPLE INJECTION SYSTEMS INTEGRATED ON A PLANAR GLASS CHIP. Analytical Chemistry, 1992. 64(17): p. 1926-1932.
22. Jacobson, S.C., S.V. Ermakov, and J.M. Ramsey, Minimizing the number of voltage sources and fluid reservoirs for electrokinetic valving in microfluidic devices. Analytical Chemistry, 1999. 71(15): p. 3273-3276.
23. Lin, C.H., et al., Double-L injection technique for high performance capillary electrophoresis detection in microfluidic chips. Journal of Micromechanics and Microengineering, 2004. 14(4): p. 639-646.
24. Tsai, C.H., et al., Numerical simulation of electrokinetic injection techniques in capillary electrophoresis microchips. Electrophoresis, 2005. 26(3): p. 674-686.
25. Park, S.-G., D.W. Olson, and K.D. Dorfman, DNA electrophoresis in a nanofence array. Lab on a Chip, 2012. 12(8): p. 1463-1470.
26. Ou, J., et al., Plasma thinned nanopost arrays for DNA electrophoresis. Journal of Vacuum Science Technology A, 2011. 29(1).
27. Kaufmann, M.E., Pulsed-field gel electrophoresis. Methods in Molecular Medicine; Molecular bacteriology: Protocols and clinical applications, ed. N. Woodford and A.P. Johnson. Vol. 15. 1998. 33-50.
28. Han, J. and H.G. Craighead, Separation of long DNA molecules in a microfabricated entropic trap array. Science, 2000. 288(5468): p. 1026-1029.
29. Han, J. and H.G. Craighead, Entropic trapping and sieving of long DNA molecules in a nanofluidic channel. Journal of Vacuum Science Technology a-Vacuum Surfaces and Films, 1999. 17(4): p. 2142-2147.
30. Han, J., S.W. Turner, and H.G. Craighead, Entropic trapping and escape of long DNA molecules at submicron size constriction. Physical Review Letters, 1999. 83(8): p. 1688-1691.
31. Dorfman, K.D., et al., Beyond Gel Electrophoresis: Microfluidic Separations, Fluorescence Burst Analysis, and DNA Stretching. Chemical Reviews, 2012. 113(4): p. 2584-2667.
32. Cao, Z. and L. Yobas, Gel-Free Electrophoresis of DNA and Proteins on Chips Featuring a 70 nm Capillary-Well Motif. Acs Nano, 2015. 9(1): p. 427-435.
33. Baba, M., et al., DNA size separation using artificially nanostructured matrix. Applied Physics Letters, 2003. 83(7): p. 1468-1470.
34. Huang, L.R., et al., Tilted Brownian ratchet for DNA analysis. Analytical Chemistry, 2003. 75(24): p. 6963-6967.
35. Volkmuth, W.D. and R.H. Austin, DNA ELECTROPHORESIS IN MICROLITHOGRAPHIC ARRAYS. Nature, 1992. 358(6387): p. 600-602.
36. Minc, N., et al., Quantitative microfluidic separation of DNA in self-assembled magnetic matrixes. Analytical Chemistry, 2004. 76(13): p. 3770-3776.
37. Saliba, A.-E., et al., Microfluidic sorting and multimodal typing of cancer cells in self-assembled magnetic arrays. Proceedings of the National Academy of Sciences of the United States of America, 2010. 107(33): p. 14524-14529.
38. Saville, P.M. and E.M. Sevick, Collision of a field-driven polymer with a finite-sized obstacle: A Brownian dynamics simulation. Macromolecules, 1999. 32(3): p. 892-899.
39. Randall, G.C. and P.S. Doyle, Electrophoretic Collision of a DNA Molecule with an Insulating Post. Physical Review Letters, 2004. 93(5): p. 058102.
40. Randall, G.C. and P.S. Doyle, Collision of a DNA polymer with a small obstacle. Macromolecules, 2006. 39(22): p. 7734-7745.
41. Shi, J., et al., Highly parallel mix-and-match fabrication of nanopillar arrays integrated in microfluidic channels for long DNA molecule separation. Applied Physics Letters, 2007. 91(15).
42. Ogawa, R., et al., Fabrication of nano-pillar chips by a plasma etching technique for fast DNA separation. Thin Solid Films, 2007. 515(12): p. 5167-5171.
43. Chan, Y.C., Y.K. Lee, and Y. Zohar, High-throughput design and fabrication of an integrated microsystem with high aspect-ratio sub-micron pillar arrays for free-solution micro capillary electrophoresis. Journal of Micromechanics and Microengineering, 2006. 16(4): p. 699-707.
44. Zeng, Y. and D.J. Harrison, Self-assembled colloidal arrays as three-dimensional nanofluidic sieves for separation of biomolecules on microchips. Analytical Chemistry, 2007. 79(6): p. 2289-2295.
45. Ou, J., et al., DNA electrophoresis in a sparse ordered post array. Physical Review E, 2009. 79(6).
46. Thomas, J.D.P. and K.D. Dorfman, Tilted post arrays for separating long DNA. Biomicrofluidics, 2014. 8(3).
47. Olson, D.W. and K.D. Dorfman, Experimental study of the effect of disorder on DNA dynamics in post arrays during electrophoresis. Physical Review E, 2012. 86(4).
48. Chen, Z. and K.D. Dorfman, Tilted hexagonal post arrays: DNA electrophoresis in anisotropic media. Electrophoresis, 2014. 35(2-3): p. 405-411.
49. Mitnik, L., et al., SEGREGATION IN DNA SOLUTIONS INDUCED BY ELECTRIC-FIELDS. Science, 1995. 267(5195): p. 219-222.
50. Magnusdottir, S., et al., Electrohydrodynamically induced aggregation during constant and pulsed field capillary electrophoresis of DNA. Biopolymers, 1999. 49(5): p. 385-401.
51. Tang, J., N. Du, and P.S. Doyle, Compression and self-entanglement of single DNA molecules under uniform electric field. Proceedings of the National Academy of Sciences, 2011. 108(39): p. 16153-16158.
52. Isambert, H., et al., Electrohydrodynamic patterns in charged colloidal solutions. Physical Review Letters, 1997. 78(5): p. 971-974.
53. Isambert, H., et al., Electrohydrodynamic patterns in macroion dispersions under a strong electric field. Physical Review E, 1997. 56(5): p. 5688-5704.
54. 黃睿亭, 於圓柱陣列微流道中以脈衝式電場分離DNA之研究, in Department of Chemical Engineering 2015, National Taiwan University.
55. Gurrieri, S., et al., Direct visualization of individual DNA molecules by fluorescence microscopy: Characterization of the factors affecting signal/background and optimization of imaging conditions using YOYO. Analytical Biochemistry, 1997. 249(1): p. 44-53.
56. Kaneta, T., et al., Suppression of electroosmotic flow and its application to determination of electrophoretic mobilities in a poly(vinylpyrrolidone)-coated capillary. Journal of Chromatography A, 2006. 1106(1-2): p. 52-55.
57. Tang, J. and P.S. Doyle, Electrophoretic stretching of DNA molecules using microscale T junctions. Applied Physics Letters, 2007. 90(22).
58. Mao, P. and J. Han, Fabrication and characterization of 20 nm planar nanofluidic channels by glass-glass and glass-silicon bonding. Lab on a Chip, 2005. 5(8): p. 837-844.
59. MicroChemicals Substrate Cleaning Adhesion Promotion. 2013.
60. O'Neill, A., J.S. Hoo, and G. Walker Rapid curing of PDMS for microfluidic applications. 2006.
61. Park, S.G., D.W. Olson, and K.D. Dorfman, DNA electrophoresis in a nanofence array. Lab on a Chip, 2012. 12(8): p. 1463-1470.
62. 謝奕民, 以靜止流微影術製造具有磁性之玻璃微元件, in Department of Chemical Engineering 2013, National Taiwan University.
63. Bow, H.C., Characterization of Nanofilter Arrays for Small Molecule Separation. 2006, the Massachusetts Institute of Technology.
64. Perkins, T.T., D.E. Smith, and S. Chu, Single polymer dynamics in an elongational flow. Science, 1997. 276(5321): p. 2016-2021.
65. 厲承翰, 於改良式漸縮微流道拉伸DNA之研究 in Department of Chemical Engineering 2012, National Taiwan University.
66. Balducci, A., C.C. Hsieh, and P.S. Doyle, Relaxation of stretched DNA in slitlike confinement. Physical Review Letters, 2007. 99(23).
67. Olson, D.W., et al., Continuous-time random walk models of DNA electrophoresis in a post array: Part I. Evaluation of existing models. Electrophoresis, 2011. 32(5): p. 573-580.
68. Minc, N., et al., Motion of single long DNA molecules through arrays of magnetic columns. Electrophoresis, 2005. 26(2): p. 362-375.
69. Cho, J. and K.D. Dorfman, Brownian dynamics simulations of electrophoretic DNA separations in a sparse ordered post array. Journal of Chromatography A, 2010. 1217(34): p. 5522-5528.
70. 陳致安, 以布朗動態法模擬DNA於圓柱陣列微流道中之電泳分離, in Department of Chemical Engineering 2015, National Taiwan University.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53597-
dc.description.abstract本研究探討在圓柱陣列微流道中以不同間歇性電場之參數分離大片段DNA。DNA在直流電場驅動下,於微流道中有機率與圓柱發生碰撞,而有上鉤、脫鉤之行為,不同大小的DNA經歷此過程所花費的時間不同而有分離效果。但在連續性的電場下,DNA會以脫鉤後的拉伸狀態前進而不易經歷碰撞,故分離效率降低。我們認為將電場以固定頻率進行開、關,可以改善此狀況,並提高DNA在通道中的碰撞機率以及分離效果。
我們由單分子實驗影像可觀測到DNA在電場關閉時會由脫鉤時之直線狀回縮,利用此現象,我們可使用較高強度(Pe>1)之間歇性電場,如50 (Pe =3.27)或90 V/cm(Pe =5.88),使DNA在經過5 mm之圓柱陣列即可將T4及λ-DNA分離。
間歇式電場提供多個可控變數:電場開、關時間(ton、toff)及電場強度(E)。本研究將固定toff以供我們研究ton及E對分離的影響。我們以T4及λ-DNA的特徵脫鉤時間劃分出三個區間:(1)較λ-DNA之脫鉤時間短之't' _'on' ^'short' 、(2)介於兩DNA脫鉤時間之't' _'on' ^'middle' 與(3)較T4 DNA之脫鉤時間長之't' _'on' ^'long' 。在一固定電場下,討論ton之選擇對於DNA分離效果及時間的影響。若固定電場開、關次數,則介於ttrap,λ及ttrap,T4中間的ton有較高解析度;若固定偵測終點,則't' _'on' ^'middle' 中較靠近ttrap,λ的ton使得DNA經歷更多碰撞而有較高的分離效果。而't' _'on' ^'short' 與't' _'on' ^'long' 之分離效果皆較't' _'on' ^'middle' 差。
電場大小對分離的影響,也和ton之選擇有關:若選擇't' _'on' ^'middle' ,則低電場有較好的分離效率;若選擇't' _'on' ^'long' ,則應使用高電場。而相同距離下,'t' _'on' ^'middle' 之結果普遍比't' _'on' ^'long' 者佳。雖然低電場之分離效果較高電場之分離好,但經由間歇式電場,實驗結果也證明了可以用高電場進行快速的大DNA之分離。此外,經由調整ton及toff,此裝置具有分離各種不同大小DNA之潛力。
zh_TW
dc.description.abstractUnlike the time consuming conventional gel electrophoresis, microchannels and nanochannels act as alternatives to separate large DNA in a shorter period of time. Though some of existing DNA separating devices are time-saving, such as channels with post array, those devices can only resolve length around the order of λ-DNA (48.5kbp). Some devices are able to resolve large DNA like T4 DNA (165.6kbp), like nano-pillar array. However, those take a long period of time.
We apply an intermittent electric field to replace the continuous one to separate λ-(48.5kbp) and T4(165.6kbp) DNA in a fused silica microchannel with a hexagonal post array of 1 micron diameter and 3 micron pitch. We can successfully resolve large DNA under low electric field (20 V/cm), and even under higher ones (50 and 90 V/cm). Baseline resolution is achieved in our experiments around 15 minutes.
Inside the post array, the mobility of DNA can be reduced with different degrees according to their molecular weight by the hooking process. However, the occurrence of channeling phenomenon under continuous electric field restricts not only the operating field strength but also the efficiency of a fixed length of channel with post array.The channeling phenomenon is found to be suppressed by the relaxation of stretched DNA during the “off” period of the electric field. We also correlate ton with the trapping time of DNA under different electric field. Separations with varying duration of the time interval ton and electric field E are conducted to examine the effect of ton and E on DNA separation efficiency with toff fixed at 3 times of the relaxation time of T4. The results indicate that under low electric field, ton in the middle of the trapping time of T4 and λ-DNA has the best resolution of separation for a fixed period of time, and ton close to the trapping time of λ-DNA has the best resolution of separation for a fixed channel length.
Compared to continuous electric field, an intermittent one enables the separation to be conducted under higher Pe. With properly tuned ton and E, the resolving power of a channel with fixed length increases only at the expense of time. The ability of this electric field scheme to be easily incorporated with existing devices proves again its great flexibility.
In addition, we also compare our simulation results to our experimental results, and the simulation results show high consistency with experimental ones, which proves the credibility of simulation. With simulation, we can predict the result before conducting an experiment, or do further research on tough conditions.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:26:10Z (GMT). No. of bitstreams: 1
ntu-104-R02524038-1.pdf: 5199836 bytes, checksum: 81f1e040c11787024c2677d6caccd552 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents致謝 I
摘要 II
Abstract III
目錄 V
圖目錄 VIII
表目錄 XVI
第 1 章 、 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
第 2 章 、 文獻回顧 3
2.1 DNA介紹 3
2.1.1 化學結構 4
2.1.2 高分子性質 7
2.2 電動力學 8
2.2.1 電雙層 8
2.2.2 電泳 9
2.2.3 電滲流 10
2.3 分離之原則 11
2.4 常用DNA之分離方法 12
2.4.1 凝膠電泳(gel electrophoresis) 13
2.4.2 毛細管電泳(capillary electrophoresis) 15
2.5 微流道電泳 (Electrophoresis in Microchannels) 16
2.5.1 微流體驅動 17
2.5.2 以含特殊構造之微流道分離DNA 18
2.6 電流體動力不穩定性 (Electrohydrodynamic instability) 28
2.7 實驗構想 31
第 3 章 、 設備、材料與方法 33
3.1 實驗設備 33
3.2 實驗材料 34
3.3 實驗方法與步驟 35
3.3.1 通道製作 35
3.3.2 溶液配置 42
3.3.3 電場裝置架設 44
3.3.4 數據收集與分析 48
第 4 章 、 結果與討論 50
4.1 DNA在圓柱陣列微流道中的重要性質 50
4.1.1 鬆弛時間 (relaxation time) 50
4.1.2 特徵脫鉤時間 (unhooking time) 52
4.1.3 無因次電場 Pe 57
4.2 DNA在各ton區間的行為 58
4.3 間歇式電場參數選擇 63
4.4 間歇式電場之分離結果 65
4.4.1 與連續式電場比較 65
4.4.2 分離解析度 (Resolution of Separation, Rs) 69
4.4.3 固定開關次數下,ton的選擇 74
4.4.4 固定分離距離下,ton的選擇 78
4.4.5 電場的影響 81
第 5 章 、 結論 85
第 6 章 、 參考文獻 87
dc.language.isozh-TW
dc.subject間歇式電場zh_TW
dc.subjectDNA電泳分離zh_TW
dc.subject圓柱陣列微流道zh_TW
dc.subjectDNA electrophoresisen
dc.subjectintermittent electric fielden
dc.subjectpost arrayen
dc.subjectmicrochannelen
dc.title於圓柱陣列微流道中以間歇式電場分離DNA-電場強度及開關頻率之影響zh_TW
dc.titleResearch of DNA Separation in Microchannels with Post Array under Intermittent Electric Field-Influence of Electric Field Strength and on-off Frequencyen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee童世煌,莊怡哲
dc.subject.keyword間歇式電場,DNA電泳分離,圓柱陣列微流道,zh_TW
dc.subject.keywordDNA electrophoresis,intermittent electric field,post array,microchannel,en
dc.relation.page91
dc.rights.note有償授權
dc.date.accepted2015-08-05
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
5.08 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved