Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53596
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝之真(Chih-Chen Hsieh)
dc.contributor.authorHung-En Leeen
dc.contributor.author李宏恩zh_TW
dc.date.accessioned2021-06-16T02:26:09Z-
dc.date.available2020-09-02
dc.date.copyright2015-09-02
dc.date.issued2015
dc.date.submitted2015-08-05
dc.identifier.citation1. 童世煌, Physical Chemistry of Polymers-L7. Polymer Chains I. 2014.
2. Watson, J.D. and F.H.C. Crick, Molecular Structure of Nucleic Acids - a Structure for Deoxyribose Nucleic Acid. Nature, 1953. 171(4356): p. 737-738.
3. P.C. Turner, A.G.M., A.D. Bates M.R.H. White, 分子生物學速成 Instant Notes Molecular Biology. 2003: 合記圖書出版社.
4. Leja, D. base-pair.
5. SantaLucia, J., A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proceedings of the National Academy of Sciences of the United States of America, 1998. 95(4): p. 1460-1465.
6. SantaLucia, J. and D. Hicks, The thermodynamics of DNA structural motifs. Annual Review of Biophysics and Biomolecular Structure, 2004. 33: p. 415-440.
7. Wetmur, J.G., DNA PROBES - APPLICATIONS OF THE PRINCIPLES OF NUCLEIC-ACID HYBRIDIZATION. Critical Reviews in Biochemistry and Molecular Biology, 1991. 26(3-4): p. 227-259.
8. Odijk, T., POLYELECTROLYTES NEAR THE ROD LIMIT. Journal of Polymer Science Part B-Polymer Physics, 1977. 15(3): p. 477-483.
9. Hsieh, C.C. and P.S. Doyle, Studying confined polymers using single-molecule DNA experiments. Korea-Australia Rheology Journal, 2008. 20(3): p. 127-142.
10. Anette Larsson, C.C., Mats Jonsson, and Bo Albinsson, Characterization of the Binding of the Fluorescent Dyes YO and YOYO to DNA by Polarized Light Spectroscopy J. Am. Chem. SOC, 1994.
11. Resources, M.P., A GUIDE TO FLUORESCENT PROBES AND LABELING TECHNOLOGIES 11th Edition (2010) in A GUIDE TO FLUORESCENT PROBES AND LABELING TECHNOLOGIES 11th Edition (2010). 2010.
12. Kundukad, B., J. Yan, and P.S. Doyle, Effect of YOYO-1 on the mechanical properties of DNA. Soft Matter, 2014. 10(48): p. 9721-9728.
13. Shevelev, I.V. and U. Hubscher, The 3 '-5 ' exonucleases. Nature Reviews Molecular Cell Biology, 2002. 3(5): p. 364-375.
14. Israelachvili, J.N., Intermolecular Surface Forces. 1985.
15. Groves, J.T., N. Ulman, and S.G. Boxer, Micropatterning fluid lipid bilayers on solid supports. Science, 1997. 275(5300): p. 651-653.
16. Castellana, E.T. and P.S. Cremer, Solid supported lipid bilayers: From biophysical studies to sensor design. Surface Science Reports, 2006. 61(10): p. 429-444.
17. Maier, B. and J.O. Radler, Conformation and self-diffusion of single DNA molecules confined to two dimensions. Physical Review Letters, 1999. 82(9): p. 1911-1914.
18. Hochrein, M.B., et al., Structure and mobility of lipid membranes on a thermoplastic substrate. Langmuir, 2006. 22(2): p. 538-545.
19. Czolkos, I., A. Jesorka, and O. Orwar, Molecular phospholipid films on solid supports. Soft Matter, 2011. 7(10): p. 4562-4576.
20. Mennicke, U. and T. Salditt, Preparation of solid-supported lipid bilayers by spin-coating. Langmuir, 2002. 18(21): p. 8172-8177.
21. Grier, S.H.B.a.D.G., The Charge of Glass and Silica Surfaces. 2008.
22. Gilbert, W. and A. Maxam, NUCLEOTIDE-SEQUENCE OF LAC OPERATOR. Proceedings of the National Academy of Sciences of the United States of America, 1973. 70(12): p. 3581-3584.
23. Sanger, F. and A.R. Coulson, A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. Journal of Molecular Biology, 1975. 94(3): p. 441- .
24. Kircher, M. and J. Kelso, High-throughput DNA sequencing - concepts and limitations. Bioessays, 2010. 32(6): p. 524-536.
25. Watson, J.D., DNA:生命的秘密 DNA:The secret of life. 2003: 時報文化.
26. 張家禎、張慧羽, 果蠅在遺傳學上的貢獻. 2013.
27. Dear, P.H., Genome Mapping. 2001.
28. Pingoud, A., et al., Type II restriction endonucleases: structure and mechanism. Cellular and Molecular Life Sciences, 2005. 62(6): p. 685-707.
29. Pingoud, A. and A. Jeltsch, Structure and function of type II restriction endonucleases. Nucleic Acids Research, 2001. 29(18): p. 3705-3727.
30. Botstein, D., et al., Construction of a Genetic-Linkage Map in Man Using Restriction Fragment Length Polymorphisms. American Journal of Human Genetics, 1980. 32(3): p. 314-331.
31. Chen, Y.F., G.A. Blab, and J.C. Meiners, Stretching sub-micron DNA fragments with optical tweezers - art. no. 664403. Optical Trapping and Optical Micromanipulation Iv, 2007. 6644: p. 64403-64403.
32. R D, J., Measuring Twisting Modulus of DNA- Predicted Effects of Local Conformational Coupling and Ext ernal Restraints on the Torsio nal Properties of Single DNA Molecules -. 2007.
33. Neuman, K.C. and A. Nagy, Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nature Methods, 2008. 5(6): p. 491-505.
34. Bensimon, A., et al., Alignment and Sensitive Detection of DNA by a Moving Interface. Science, 1994. 265(5181): p. 2096-2098.
35. Nazari, Z.E. and L. Gurevich, Controlled deposition and combing of DNA across lithographically defined patterns on silicon. Beilstein Journal of Nanotechnology, 2013. 4: p. 72-76.
36. 厲承翰, 於改良式漸縮微流道拉伸DNA之研究, in 國立台灣大學化學工程研究所. 2012.
37. Zohar, H., et al., Peptide Nucleic Acids as Tools for Single-Molecule Sequence Detection and Manipulation. Nano Letters, 2010. 10(11): p. 4697-4701.
38. Zohar, H. and S.J. Muller, Labeling DNA for single-molecule experiments: methods of labeling internal specific sequences on double-stranded DNA. Nanoscale, 2011. 3(8): p. 3027-3039.
39. Douville, N., D. Huh, and S. Takayama, DNA linearization through confinement in nanofluidic channels. Analytical and Bioanalytical Chemistry, 2008. 391(7): p. 2395-2409.
40. Dorfman, K.D., et al., Hydrodynamics of DNA confined in nanoslits and nanochannels. European Physical Journal-Special Topics, 2014. 223(14): p. 3179-3200.
41. Reisner, W., J.N. Pedersen, and R.H. Austin, DNA confinement in nanochannels: physics and biological applications. Reports on Progress in Physics, 2012. 75(10).
42. Lam, E.T., et al., Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly. Nature Biotechnology, 2012. 30(8): p. 771-776.
43. Jo, K., et al., A single-molecule barcoding system using nanoslits for DNA analysis. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104(8): p. 2673-2678.
44. Kim, Y., et al., Nanochannel confinement: DNA stretch approaching full contour length. Lab on a Chip, 2011. 11(10): p. 1721-1729.
45. Hochrein, M.B., et al., DNA localization and stretching on periodically microstructured lipid membranes. Physical Review Letters, 2006. 96(3).
46. 謝明勳, 於脂雙層上拉伸DNA與其基因圖譜應用之研究. 2014, 國立台灣大學化學工程研究所.
47. Nielsen, P.E., Applications of peptide nucleic acids. Current Opinion in Biotechnology, 1999. 10(1): p. 71-75.
48. Bentin, T., H.J. Larsen, and P.E. Nielsen, Combined triplex/duplex invasion of double-stranded DNA by 'tail-clamp' peptide nucleic acid. Biochemistry, 2003. 42(47): p. 13987-13995.
49. Luzzietti, N., et al., Efficient preparation of internally modified single-molecule constructs using nicking enzymes. Nucleic Acids Research, 2011. 39(3).
50. Das, S.K., et al., Single molecule linear analysis of DNA in nano-channel labeled with sequence specific fluorescent probes. Nucleic Acids Research, 2010. 38(18).
51. Oana, H., M. Ueda, and M. Washizu, Visualization of a specific sequence on a single large DNA molecule using fluorescence microscopy based on a new DNA-stretching method. Biochemical and Biophysical Research Communications, 1999. 265(1): p. 140-143.
52. Biebricher, A., et al., Tracking of Single Quantum Dot Labeled EcoRV Sliding along DNA Manipulated by Double Optical Tweezers. Biophysical Journal, 2009. 96(8): p. L50-L52.
53. Taylor, J.R., M.M. Fang, and S.M. Nie, Probing specific sequences on single DNA molecules with bioconjugated fluorescent nanoparticles. Analytical Chemistry, 2000. 72(9): p. 1979-1986.
54. Chan, E.Y., et al., DNA mapping using microfluidic stretching and single-molecule detection of fluorescent site-specific tags. Genome Research, 2004. 14(6): p. 1137-1146.
55. Schwartz, D.C., et al., Ordered Restriction Maps of Saccharomyces cerevisiae Chromosomes Constructed by Optical Mapping. Science, 1993. 262(5130): p. 110-114.
56. Neely, R.K., J. Deen, and J. Hofkens, Optical Mapping of DNA: Single-Molecule-Based Methods for Mapping Genomes. Biopolymers, 2011. 95(5): p. 298-311.
57. Cai, W.W., et al., High-resolution restriction maps of bacterial artificial chromosomes constructed by optical mapping. Proceedings of the National Academy of Sciences of the United States of America, 1998. 95(7): p. 3390-3395.
58. Riehn, R., et al., Restriction mapping in nanofluidic devices. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(29): p. 10012-10016.
59. Hastie, A.R., et al., Rapid Genome Mapping in Nanochannel Arrays for Highly Complete and Accurate De Novo Sequence Assembly of the Complex Aegilops tauschii Genome. Plos One, 2013. 8(2).
60. Sriram, K.K., et al., Direct optical mapping of transcription factor binding sites on field-stretched lambda-DNA in nanofluidic devices. Nucleic Acids Research, 2014. 42(10).
61. Reisner, W., et al., Single-molecule denaturation mapping of DNA in nanofluidic channels. Proceedings of the National Academy of Sciences of the United States of America, 2010. 107(30): p. 13294-13299.
62. Schwartz, D.C. and A. Samad, Optical mapping approaches to molecular genomics. Current Opinion in Biotechnology, 1997. 8(1): p. 70-74.
63. Xiao, H., Introduction to Semiconductor Manufacturing Technology 3/E. Taiwan: 全華圖書股份有限公司.
64. Olympus, Instruction-UIP SPLIT IMAGING TV PORT.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53596-
dc.description.abstract自從華生、克立克共同發表DNA的雙股螺旋結構,人類展開了一連串相關研究,企圖一窺生物遺傳之全貌,隨之發展出的DNA定序與DNA圖譜幫助使得人類解開遺傳的密碼,例如準確地找出製造胰島素的基因,某些遺傳疾病反映在異常的染色體結構。
本研究著重於快速建立DNA圖譜,期待能應用於病原體篩檢等具有時效急迫性的領域。傳統DNA圖譜的建立,需要透過限制酶酵素將樣本DNA剪切成數片段,隨後還需搭配聚合酶鏈鎖反應增幅片段的數目,以及凝膠電泳的交叉比對分析,經過上述等繁複步驟才能得到樣本DNA之圖譜。近年來許多研究提出「DNA單分子圖譜」,藉由直觀地觀察「一根」線性DNA上的標記點的相對位置與數目,學者將能得到樣本DNA之圖譜。
單分子圖譜牽涉DNA拉伸與DNA序列標記等兩大技術。關於DNA拉伸,奈米通道侷限拉伸法為近十年來之顯學,然而奈米通道的製程所費不貲,操作上也相當複雜,這對於實際應用是很大的阻力。我們實驗室所用之脂雙層拉伸法則克服了這些挑戰,我們選用正電脂雙層與負電DNA具有靜電吸引力而使得DNA得以吸附於其上,由於支托脂雙層的二維流動性,DNA得以逐漸展開,最後在表面上的溝槽之側壁達到最低自由能,因此能夠自發拉伸呈一直線。本研究將使用-DNA(48502 bp)以及T4GT7-DNA(165647 bp)作為研究樣本,此拉伸法皆能夠使兩者達到80%的拉伸率,已能夠媲美次50奈米級的奈米通道中的DNA拉伸率。
關於DNA序列標記,我們過去嘗試過限制酵素以及雙肽核酸標定的方法,雖然皆能成功建立正確的DNA圖譜,然而兩種方法皆有各自的限制,限制酵素法雖然耗時較少,但須全程拍攝剪切過程,受限於CCD視野大小而難以一次收集足夠數據,此為採樣效率不佳;雙肽核酸法雖然改善了採樣效率差的問題,但讓雙肽核酸標記於DNA上所花的反應時間過長,因此與「快速建立DNA圖譜」的目標相違背。
因此,我們使用另一種同時滿足採樣效率與反應時間快速的方法-缺口標記法,我們分別使用Nb.BbvCI與Nt.BspQI缺口內切酵素在l-DNA與T4 GT7 DNA上建立圖譜。缺口標定法乃是利用缺口內切酵素在雙股DNA的其中一股特定序列上製造出缺口,再由DNA聚合酶將具有螢光修飾的核苷酸合成於DNA骨幹上,缺口標記反應時間只需2~3小時,而且反應後的DNA能夠保持其完整性與拉伸率。為了正確判讀的標記位置,我們將擷取的光強度分布圖加以擬合,因此我們將能有系統地得出的標記位置。
我們發現脂雙層系統與缺口標記法能夠彼此相容,由兩者所建立的DNA圖譜具有低成本、操作容易、高準確、高精確以及快速建立等優勢,因此本研究非常有潛力應用於快速疾病檢測、病原體篩檢等醫療檢測技術。
zh_TW
dc.description.abstractOur research is to establish rapid DNA mapping, which has the great potential to apply to medical diagnostics and pathogen identification. In tradition, DNA mapping needs PCR, gel electrophoresis and analysis for de novo assembly, the whole process is complicated and time-consuming. Recently, the field of single-molecule biophysics has produced new techniques that characterize individual DNA molecules, allowing for establishing the DNA mapping without a great deal of DNA samples. Using the direct linear analysis (DLA), we can intuitively obtain DNA optical mapping from the sequence-specific optical signal on linear DNA.
The two main techniques in employing this concept are DNA stretching and DNA sequence-specific labeling. We have managed to make DNA adopt an extended conformation on the patterned lipid bilayer, where DNA spontaneously gathers and unravels along the root of the trench walls. For both T4GT7(166kbp) and lambda DNA(48.5kbp), the relative DNA extension can reach as high as 85% of their contour lengths, comparable to the highest degree of DNA extension obtained in sub-50nm nanochannels.
About DNA sequence-specific labeling, we have performed the restriction enzyme method and bis-PNA labeling. However, there are some limitations in the both mapping. Restriction enzyme provides a rapid mapping, but we can’t capture enough data at one time due to the field of view. On the other hand, bis-PNA labeling takes a lot of time, contradicting our goal, 「rapid DNA mapping」.
To overcome the above challenges-sampling efficiency and time-consuming, we performed another DNA mapping technique-nick-labeling. We used nicking enzyme to cut specific sequence on one strand of dsDNA, and then DNA polymerase incorporated the fluorescent nucleotide in the nicked site. In addition, the image analysis was conducted by fitting the optical intensity profile of the DNA, such that we can read out the location of the optical signals on the DNA.
We found that the patterned lipid bilayer is compatible to nick-labeling and other labeling techniques we tried. The nick-labeling DNA mapping on lipid bilayer has strength in low-cost, easy-to-use, high accuracy and precision, rapid mapping. Therefore, our research has a great potential to apply to the medical diagnostics and pathogen identification.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:26:09Z (GMT). No. of bitstreams: 1
ntu-104-R02524068-1.pdf: 8744479 bytes, checksum: f6eeef19ac4fa093bd000a5de314392c (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents致謝 I
摘要 III
Abstract V
目錄 VII
圖目錄 XI
表目錄 XXII
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
第二章 文獻回顧 4
2.1 DNA介紹 4
2.1.1 DNA的結構[3] 5
2.1.2 DNA的熱力學性質 7
2.1.3 DNA的高分子性質 13
2.1.3.1 輪廓長度(contour length) 13
2.1.3.2 堅硬長度(persistent length, p) 13
2.1.3.3 方均根末端距(end-to-end distance, <R2>) 14
2.1.3.4 有效直徑(effective diameter, w) 15
2.1.3.5 纏繞半徑(radius of gyration, <Rg2>) 15
2.1.3.6 侷限空間 16
2.1.4 DNA與染劑分子 17
2.1.5 DNA的複製 21
2.1.5.1 DNA複製機制 21
2.1.5.2 DNA聚合酶(DNA polymerase) 23
2.1.5.3 DNA連接酶(DNA ligase) 27
2.2 脂質(Lipid) 28
2.2.1 脂質之基本性質 28
2.2.2 支托脂雙層(Supported lipid bilayer, SLB) 31
2.2.3 支托脂雙層的製備 33
2.2.3.1 Langmuir-Blodgett法 33
2.2.3.2 脂球融合法(vesicle fusion) 33
2.2.3.3 旋轉塗佈法(spin-coating) 34
2.3 基因檢測技術之發展 35
2.3.1 聚合酶連鎖反應(Polymerase Chain Reaction, PCR) 35
2.3.2 電泳(Electrophoresis) 37
2.3.3 DNA定序(DNA sequencing) 41
2.3.4 DNA圖譜(DNA mapping) 46
2.3.4.1 遺傳圖譜與物理圖譜之差異 46
2.3.4.2 限制酵素(Restriction endonuclease) 50
2.3.4.3 限制酵素圖譜(Restriction mapping)與其應用 53
2.4 單分子DNA圖譜 (Single-molecule DNA mapping) 54
2.4.1 DNA拉伸技術(DNA stretching) 54
2.4.1.1 栓扯拉伸法(Tethered DNA) 54
2.4.1.2 分子梳拉伸法(Molecular Combing) 56
2.4.1.3 流電場拉伸法(Flow and Electric Field) 57
2.4.1.4 侷限空間拉伸法(Confined DNA) 59
2.4.1.5 脂雙層拉伸法 63
2.4.2 DNA序列標定技術(DNA specific-sequence labeling) 67
2.4.2.1 雙肽核酸標定(bis-PNA labeling) 67
2.4.2.2 缺口標定(Nicking labeling) 69
2.4.2.3 改質蛋白質標定 72
2.4.3 現行之DNA單分子圖譜 73
2.4.3.1 有次序的限制圖譜(Ordered restriction mapping) 74
2.4.3.2 序列標記圖譜(Sequence-labeled mapping) 77
2.4.3.3 變性圖譜 (Denaturation mapping) 80
第三章 研究理念與文獻之比較 82
3.1.1 傳統圖譜v.s. DNA單分子圖譜 82
3.1.2 脂雙層拉伸法與現行拉伸技術之比較 83
3.1.3 以缺口標記法建立的DNA圖譜與其他圖譜之比較 84
第四章 實驗設備與步驟 86
4.1 儀器設備 86
4.2 實驗藥品 89
4.3 實驗方法與步驟 92
4.3.1 圖案玻片之製作[63] 92
4.3.2 脂質溶液配置 96
4.3.3 脂雙層之架設 98
4.3.4 DNA溶液配置 99
4.3.4.1 DNA之稀釋 99
4.3.4.2 DNA之染色 99
4.3.5 DNA之限制酵素圖譜 100
4.3.6 DNA之bis-PNA圖譜 101
4.3.7 DNA之缺口標定圖譜 102
4.3.7.1 缺口內切酵素反應 102
4.3.7.2 核苷酸聚合反應 103
4.3.7.3 YOYO-1染色 104
第五章 實驗結果分析與討論 106
5.1 實驗觀察 106
5.1.1 缺口標記DNA圖譜之實驗觀察 106
5.1.2 限制酵素圖譜 110
5.1.3 Bis-PNA圖譜之實驗觀察 110
5.2 數據分析方法 112
5.3 限制酵素圖譜 114
5.4 Bis-PNA標記圖譜 117
5.5 缺口標記DNA圖譜 119
5.5.1 染色比1:10下的DNA長度 119
5.5.2 使用缺口內切酵素Nb.BbvCI對-DNA建立圖譜 121
5.5.3 使用缺口內切酵素Nb.BbvCI對DNA建立圖譜 131
5.5.4 使用缺口內切酵素Nt.BspQI對-DNA建立圖譜 133
5.5.5 實驗步驟之加速 137
5.6 本實驗圖之缺口標記圖譜與文獻比較 139
第六章 結論 141
第七章 參考文獻 142
dc.language.isozh-TW
dc.title以缺口標記法於脂雙層伸展之DNA上快速建立DNA圖譜zh_TW
dc.titleUsing Nick-Labeling Technique to Perform Rapid DNA Optical Mapping on DNA Unravelled on Patterned Lipid Bilayersen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee童世煌,莊怡哲
dc.subject.keywordDNA,脂雙層,快速DNA圖譜,缺口標記法,zh_TW
dc.subject.keywordDNA,Lipid bilayers,Rapid DNA optical mapping,Nick-labeling,en
dc.relation.page146
dc.rights.note有償授權
dc.date.accepted2015-08-05
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
8.54 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved