Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53578
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳光超
dc.contributor.authorYi-Tang Leeen
dc.contributor.author李逸唐zh_TW
dc.date.accessioned2021-06-16T02:25:56Z-
dc.date.available2020-08-28
dc.date.copyright2015-08-28
dc.date.issued2015
dc.date.submitted2015-08-05
dc.identifier.citationAngers, C.G., and Merz, A.J. (2011). New links between vesicle coats and Rab-mediated vesicle targeting. Seminars in cell developmental biology 22, 18-26.
Antonioli, M., Albiero, F., Nazio, F., Vescovo, T., Perdomo, A.B., Corazzari, M., Marsella, C., Piselli, P., Gretzmeier, C., Dengjel, J., et al. (2014). AMBRA1 interplay with cullin E3 ubiquitin ligases regulates autophagy dynamics. Developmental cell 31, 734-746.
Aran, V., Bryant, N.J., and Gould, G.W. (2011). Tyrosine phosphorylation of Munc18c on residue 521 abrogates binding to Syntaxin 4. BMC biochemistry 12, 19.
Berg, T.O., Fengsrud, M., Stromhaug, P.E., Berg, T., and Seglen, P.O. (1998). Isolation and characterization of rat liver amphisomes. Evidence for fusion of autophagosomes with both early and late endosomes. The Journal of biological chemistry 273, 21883-21892.
Brocker, C., Engelbrecht-Vandre, S., and Ungermann, C. (2010). Multisubunit tethering complexes and their role in membrane fusion. Current biology : CB 20, R943-952.
Chen, Y., and Klionsky, D.J. (2011). The regulation of autophagy - unanswered questions. Journal of cell science 124, 161-170.
Collins, K.M., Thorngren, N.L., Fratti, R.A., and Wickner, W.T. (2005). Sec17p and HOPS, in distinct SNARE complexes, mediate SNARE complex disruption or assembly for fusion. The EMBO journal 24, 1775-1786.
Dance, M., Montagner, A., Salles, J.P., Yart, A., and Raynal, P. (2008). The molecular functions of Shp2 in the Ras/Mitogen-activated protein kinase (ERK1/2) pathway. Cellular signalling 20, 453-459.
Dascher, C., Matteson, J., and Balch, W.E. (1994). Syntaxin 5 regulates endoplasmic reticulum to Golgi transport. The Journal of biological chemistry 269, 29363-29366.
Di Bartolomeo, S., Corazzari, M., Nazio, F., Oliverio, S., Lisi, G., Antonioli, M., Pagliarini, V., Matteoni, S., Fuoco, C., Giunta, L., et al. (2010). The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy. The Journal of cell biology 191, 155-168.
Diao, J., Liu, R., Rong, Y., Zhao, M., Zhang, J., Lai, Y., Zhou, Q., Wilz, L.M., Li, J., Vivona, S., et al. (2015). ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes. Nature 520, 563-566.
Dooley, H.C., Razi, M., Polson, H.E., Girardin, S.E., Wilson, M.I., and Tooze, S.A. (2014). WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1. Molecular cell 55, 238-252.
Du, W.W., Fang, L., Li, M., Yang, X., Liang, Y., Peng, C., Qian, W., O'Malley, Y.Q., Askeland, R.W., Sugg, S.L., et al. (2013). MicroRNA miR-24 enhances tumor invasion and metastasis by targeting PTPN9 and PTPRF to promote EGF signaling. Journal of cell science 126, 1440-1453.
Dunlop, E.A., Hunt, D.K., Acosta-Jaquez, H.A., Fingar, D.C., and Tee, A.R. (2011). ULK1 inhibits mTORC1 signaling, promotes multisite Raptor phosphorylation and hinders substrate binding. Autophagy 7, 737-747.
Egan, D., Kim, J., Shaw, R.J., and Guan, K.L. (2011). The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy 7, 643-644.
Eskelinen, E.L. (2005). Maturation of autophagic vacuoles in Mammalian cells. Autophagy 1, 1-10.
Fader, C.M., Sanchez, D.G., Mestre, M.B., and Colombo, M.I. (2009). TI-VAMP/VAMP7 and VAMP3/cellubrevin: two v-SNARE proteins involved in specific steps of the autophagy/multivesicular body pathways. Biochimica et biophysica acta 1793, 1901-1916.
Fan, W., Nassiri, A., and Zhong, Q. (2011). Autophagosome targeting and membrane curvature sensing by Barkor/Atg14(L). Proceedings of the National Academy of Sciences of the United States of America 108, 7769-7774.
Foster, L.J., Yeung, B., Mohtashami, M., Ross, K., Trimble, W.S., and Klip, A. (1998). Binary interactions of the SNARE proteins syntaxin-4, SNAP23, and VAMP-2 and their regulation by phosphorylation. Biochemistry 37, 11089-11096.
Furuta, N., Fujita, N., Noda, T., Yoshimori, T., and Amano, A. (2010). Combinational soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins VAMP8 and Vti1b mediate fusion of antimicrobial and canonical autophagosomes with lysosomes. Molecular biology of the cell 21, 1001-1010.
Ganley, I.G., Lam du, H., Wang, J., Ding, X., Chen, S., and Jiang, X. (2009). ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. The Journal of biological chemistry 284, 12297-12305.
Guo, B., Liang, Q., Li, L., Hu, Z., Wu, F., Zhang, P., Ma, Y., Zhao, B., Kovacs, A.L., Zhang, Z., et al. (2014). O-GlcNAc-modification of SNAP-29 regulates autophagosome maturation. Nature cell biology 16, 1215-1226.
Gurunathan, S., Marash, M., Weinberger, A., and Gerst, J.E. (2002). t-SNARE phosphorylation regulates endocytosis in yeast. Molecular biology of the cell 13, 1594-1607.
Gutierrez, M.G., Munafo, D.B., Beron, W., and Colombo, M.I. (2004). Rab7 is required for the normal progression of the autophagic pathway in mammalian cells. Journal of cell science 117, 2687-2697.
Hailey, D.W., Rambold, A.S., Satpute-Krishnan, P., Mitra, K., Sougrat, R., Kim, P.K., and Lippincott-Schwartz, J. (2010). Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141, 656-667.
Hamasaki, M., Furuta, N., Matsuda, A., Nezu, A., Yamamoto, A., Fujita, N., Oomori, H., Noda, T., Haraguchi, T., Hiraoka, Y., et al. (2013). Autophagosomes form at ER-mitochondria contact sites. Nature 495, 389-393.
Hao, Q., Samten, B., Ji, H.L., Zhao, Z.J., and Tang, H. (2012). Tyrosine phosphatase PTP-MEG2 negatively regulates vascular endothelial growth factor receptor signaling and function in endothelial cells. American journal of physiology Cell physiology 303, C548-553.
Hardie, D.G., Ross, F.A., and Hawley, S.A. (2012). AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nature reviews Molecular cell biology 13, 251-262.
Hars, E.S., Qi, H., Ryazanov, A.G., Jin, S., Cai, L., Hu, C., and Liu, L.F. (2007). Autophagy regulates ageing in C. elegans. Autophagy 3, 93-95.
He, C., and Klionsky, D.J. (2009). Regulation mechanisms and signaling pathways of autophagy. Annual review of genetics 43, 67-93.
He, C., and Levine, B. (2010). The Beclin 1 interactome. Current opinion in cell biology 22, 140-149.
Hendriks, W.J., Elson, A., Harroch, S., Pulido, R., Stoker, A., and den Hertog, J. (2013). Protein tyrosine phosphatases in health and disease. The FEBS journal 280, 708-730.
Hohenstein, A.C., and Roche, P.A. (2001). SNAP-29 is a promiscuous syntaxin-binding SNARE. Biochemical and biophysical research communications 285, 167-171.
Hong, W. (2005). SNAREs and traffic. Biochimica et biophysica acta 1744, 493-517.
Hong, W., and Lev, S. (2014). Tethering the assembly of SNARE complexes. Trends in cell biology 24, 35-43.
Huynh, H., Bottini, N., Williams, S., Cherepanov, V., Musumeci, L., Saito, K., Bruckner, S., Vachon, E., Wang, X., Kruger, J., et al. (2004). Control of vesicle fusion by a tyrosine phosphatase. Nature cell biology 6, 831-839.
Hyttinen, J.M., Niittykoski, M., Salminen, A., and Kaarniranta, K. (2013). Maturation of autophagosomes and endosomes: a key role for Rab7. Biochimica et biophysica acta 1833, 503-510.
Itakura, E., Kishi, C., Inoue, K., and Mizushima, N. (2008). Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Molecular biology of the cell 19, 5360-5372.
Itakura, E., Kishi-Itakura, C., and Mizushima, N. (2012). The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151, 1256-1269.
Jager, S., Bucci, C., Tanida, I., Ueno, T., Kominami, E., Saftig, P., and Eskelinen, E.L. (2004). Role for Rab7 in maturation of late autophagic vacuoles. Journal of cell science 117, 4837-4848.
Jean, S., Cox, S., Nassari, S., and Kiger, A.A. (2015). Starvation-induced MTMR13 and RAB21 activity regulates VAMP8 to promote autophagosome-lysosome fusion. EMBO reports 16, 297-311.
Jewell, J.L., Oh, E., Bennett, S.M., Meroueh, S.O., and Thurmond, D.C. (2008). The tyrosine phosphorylation of Munc18c induces a switch in binding specificity from syntaxin 4 to Doc2beta. The Journal of biological chemistry 283, 21734-21746.
Jiang, P., Nishimura, T., Sakamaki, Y., Itakura, E., Hatta, T., Natsume, T., and Mizushima, N. (2014). The HOPS complex mediates autophagosome-lysosome fusion through interaction with syntaxin 17. Molecular biology of the cell 25, 1327-1337.
Jung, C.H., Ro, S.H., Cao, J., Otto, N.M., and Kim, D.H. (2010). mTOR regulation of autophagy. FEBS letters 584, 1287-1295.
Kim, J., Kim, Y.C., Fang, C., Russell, R.C., Kim, J.H., Fan, W., Liu, R., Zhong, Q., and Guan, K.L. (2013). Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell 152, 290-303.
Kim, J., Kundu, M., Viollet, B., and Guan, K.L. (2011). AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nature cell biology 13, 132-141.
Kramer, L., and Ungermann, C. (2011). HOPS drives vacuole fusion by binding the vacuolar SNARE complex and the Vam7 PX domain via two distinct sites. Molecular biology of the cell 22, 2601-2611.
Kruger, J.M., Fukushima, T., Cherepanov, V., Borregaard, N., Loeve, C., Shek, C., Sharma, K., Tanswell, A.K., Chow, C.W., and Downey, G.P. (2002). Protein-tyrosine phosphatase MEG2 is expressed by human neutrophils. Localization to the phagosome and activation by polyphosphoinositides. The Journal of biological chemistry 277, 2620-2628.
Laplante, M., and Sabatini, D.M. (2012). mTOR signaling in growth control and disease. Cell 149, 274-293.
Levine, B., and Kroemer, G. (2008). Autophagy in the pathogenesis of disease. Cell 132, 27-42.
Levine, B., Mizushima, N., and Virgin, H.W. (2011). Autophagy in immunity and inflammation. Nature 469, 323-335.
Li, M., Khambu, B., Zhang, H., Kang, J.H., Chen, X., Chen, D., Vollmer, L., Liu, P.Q., Vogt, A., and Yin, X.M. (2013). Suppression of lysosome function induces autophagy via a feedback down-regulation of MTOR complex 1 (MTORC1) activity. The Journal of biological chemistry 288, 35769-35780.
Liang, C., Lee, J.S., Inn, K.S., Gack, M.U., Li, Q., Roberts, E.A., Vergne, I., Deretic, V., Feng, P., Akazawa, C., et al. (2008). Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking. Nature cell biology 10, 776-787.
Lobingier, B.T., and Merz, A.J. (2012). Sec1/Munc18 protein Vps33 binds to SNARE domains and the quaternary SNARE complex. Molecular biology of the cell 23, 4611-4622.
Long, X., Ortiz-Vega, S., Lin, Y., and Avruch, J. (2005). Rheb binding to mammalian target of rapamycin (mTOR) is regulated by amino acid sufficiency. The Journal of biological chemistry 280, 23433-23436.
Maehama, T., and Dixon, J.E. (1998). The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. The Journal of biological chemistry 273, 13375-13378.
Majeed, M., Caveggion, E., Lowell, C.A., and Berton, G. (2001). Role of Src kinases and Syk in Fcgamma receptor-mediated phagocytosis and phagosome-lysosome fusion. Journal of leukocyte biology 70, 801-811.
Mauthe, M., Jacob, A., Freiberger, S., Hentschel, K., Stierhof, Y.D., Codogno, P., and Proikas-Cezanne, T. (2011). Resveratrol-mediated autophagy requires WIPI-1-regulated LC3 lipidation in the absence of induced phagophore formation. Autophagy 7, 1448-1461.
Mizushima, N., and Komatsu, M. (2011). Autophagy: renovation of cells and tissues. Cell 147, 728-741.
Mizushima, N., and Levine, B. (2010). Autophagy in mammalian development and differentiation. Nature cell biology 12, 823-830.
Moreau, K., Ravikumar, B., Renna, M., Puri, C., and Rubinsztein, D.C. (2011). Autophagosome precursor maturation requires homotypic fusion. Cell 146, 303-317.
Moreau, K., Renna, M., and Rubinsztein, D.C. (2013). Connections between SNAREs and autophagy. Trends in biochemical sciences 38, 57-63.
Nazio, F., Strappazzon, F., Antonioli, M., Bielli, P., Cianfanelli, V., Bordi, M., Gretzmeier, C., Dengjel, J., Piacentini, M., Fimia, G.M., et al. (2013). mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nature cell biology 15, 406-416.
Noda, N.N., and Inagaki, F. (2015). Mechanisms of Autophagy. Annual review of biophysics.
Oh, E., and Thurmond, D.C. (2006). The stimulus-induced tyrosine phosphorylation of Munc18c facilitates vesicle exocytosis. The Journal of biological chemistry 281, 17624-17634.
Ostman, A., Hellberg, C., and Bohmer, F.D. (2006). Protein-tyrosine phosphatases and cancer. Nature reviews Cancer 6, 307-320.
Paez, J., and Sellers, W.R. (2003). PI3K/PTEN/AKT pathway. A critical mediator of oncogenic signaling. Cancer treatment and research 115, 145-167.
Papinski, D., Schuschnig, M., Reiter, W., Wilhelm, L., Barnes, C.A., Maiolica, A., Hansmann, I., Pfaffenwimmer, T., Kijanska, M., Stoffel, I., et al. (2014). Early steps in autophagy depend on direct phosphorylation of Atg9 by the Atg1 kinase. Molecular cell 53, 471-483.
Pieren, M., Schmidt, A., and Mayer, A. (2010). The SM protein Vps33 and the t-SNARE H(abc) domain promote fusion pore opening. Nature structural molecular biology 17, 710-717.
Puri, C., Renna, M., Bento, C.F., Moreau, K., and Rubinsztein, D.C. (2013). Diverse autophagosome membrane sources coalesce in recycling endosomes. Cell 154, 1285-1299.
Rapaport, D., Lugassy, Y., Sprecher, E., and Horowitz, M. (2010). Loss of SNAP29 impairs endocytic recycling and cell motility. PloS one 5, e9759.
Ravikumar, B., Moreau, K., Jahreiss, L., Puri, C., and Rubinsztein, D.C. (2010). Plasma membrane contributes to the formation of pre-autophagosomal structures. Nature cell biology 12, 747-757.
Renna, M., Schaffner, C., Winslow, A.R., Menzies, F.M., Peden, A.A., Floto, R.A., and Rubinsztein, D.C. (2011). Autophagic substrate clearance requires activity of the syntaxin-5 SNARE complex. Journal of cell science 124, 469-482.
Rieder, S.E., and Emr, S.D. (1997). A novel RING finger protein complex essential for a late step in protein transport to the yeast vacuole. Molecular biology of the cell 8, 2307-2327.
Rizo, J., and Xu, J. (2015). The Synaptic Vesicle Release Machinery. Annual review of biophysics 44, 339-367.
Rodkey, T.L., Liu, S., Barry, M., and McNew, J.A. (2008). Munc18a scaffolds SNARE assembly to promote membrane fusion. Molecular biology of the cell 19, 5422-5434.
Romanov, J., Walczak, M., Ibiricu, I., Schuchner, S., Ogris, E., Kraft, C., and Martens, S. (2012). Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation. The EMBO journal 31, 4304-4317.
Russell, R.C., Tian, Y., Yuan, H., Park, H.W., Chang, Y.Y., Kim, J., Kim, H., Neufeld, T.P., Dillin, A., and Guan, K.L. (2013). ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nature cell biology 15, 741-750.
Rusten, T.E., and Stenmark, H. (2009). How do ESCRT proteins control autophagy? Journal of cell science 122, 2179-2183.
Saito, K., Tautz, L., and Mustelin, T. (2007). The lipid-binding SEC14 domain. Biochimica et biophysica acta 1771, 719-726.
Sancak, Y., Peterson, T.R., Shaul, Y.D., Lindquist, R.A., Thoreen, C.C., Bar-Peled, L., and Sabatini, D.M. (2008). The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320, 1496-1501.
Sato, M., Saegusa, K., Sato, K., Hara, T., Harada, A., and Sato, K. (2011). Caenorhabditis elegans SNAP-29 is required for organellar integrity of the endomembrane system and general exocytosis in intestinal epithelial cells. Molecular biology of the cell 22, 2579-2587.
Sato, T.K., Rehling, P., Peterson, M.R., and Emr, S.D. (2000). Class C Vps protein complex regulates vacuolar SNARE pairing and is required for vesicle docking/fusion. Molecular cell 6, 661-671.
Schardt, A., Brinkmann, B.G., Mitkovski, M., Sereda, M.W., Werner, H.B., and Nave, K.A. (2009). The SNARE protein SNAP-29 interacts with the GTPase Rab3A: Implications for membrane trafficking in myelinating glia. Journal of neuroscience research 87, 3465-3479.
Seals, D.F., Eitzen, G., Margolis, N., Wickner, W.T., and Price, A. (2000). A Ypt/Rab effector complex containing the Sec1 homolog Vps33p is required for homotypic vacuole fusion. Proceedings of the National Academy of Sciences of the United States of America 97, 9402-9407.
Seely, B.L., Staubs, P.A., Reichart, D.R., Berhanu, P., Milarski, K.L., Saltiel, A.R., Kusari, J., and Olefsky, J.M. (1996). Protein tyrosine phosphatase 1B interacts with the activated insulin receptor. Diabetes 45, 1379-1385.
Settembre, C., Zoncu, R., Medina, D.L., Vetrini, F., Erdin, S., Erdin, S., Huynh, T., Ferron, M., Karsenty, G., Vellard, M.C., et al. (2012). A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. The EMBO journal 31, 1095-1108.
Shen, H.M., and Mizushima, N. (2014). At the end of the autophagic road: an emerging understanding of lysosomal functions in autophagy. Trends in biochemical sciences 39, 61-71.
Shen, J., Tareste, D.C., Paumet, F., Rothman, J.E., and Melia, T.J. (2007). Selective activation of cognate SNAREpins by Sec1/Munc18 proteins. Cell 128, 183-195.
Snyder, D.A., Kelly, M.L., and Woodbury, D.J. (2006). SNARE complex regulation by phosphorylation. Cell biochemistry and biophysics 45, 111-123.
Su, F., Ren, F., Rong, Y., Wang, Y., Geng, Y., Wang, Y., Feng, M., Ju, Y., Li, Y., Zhao, Z.J., et al. (2012). Protein tyrosine phosphatase Meg2 dephosphorylates signal transducer and activator of transcription 3 and suppresses tumor growth in breast cancer. Breast cancer research : BCR 14, R38.
Sun, L.L., Li, M., Suo, F., Liu, X.M., Shen, E.Z., Yang, B., Dong, M.Q., He, W.Z., and Du, L.L. (2013). Global analysis of fission yeast mating genes reveals new autophagy factors. PLoS genetics 9, e1003715.
Sutton, R.B., Fasshauer, D., Jahn, R., and Brunger, A.T. (1998). Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395, 347-353.
Takats, S., Pircs, K., Nagy, P., Varga, A., Karpati, M., Hegedus, K., Kramer, H., Kovacs, A.L., Sass, M., and Juhasz, G. (2014). Interaction of the HOPS complex with Syntaxin 17 mediates autophagosome clearance in Drosophila. Molecular biology of the cell 25, 1338-1354.
Tanida, I., Ueno, T., and Kominami, E. (2004). LC3 conjugation system in mammalian autophagy. The international journal of biochemistry cell biology 36, 2503-2518.
Tonks, N.K. (2006). Protein tyrosine phosphatases: from genes, to function, to disease. Nature reviews Molecular cell biology 7, 833-846.
Tooze, S.A., Abada, A., and Elazar, Z. (2014). Endocytosis and autophagy: exploitation or cooperation? Cold Spring Harbor perspectives in biology 6, a018358.
van der Vaart, A., and Reggiori, F. (2010). The Golgi complex as a source for yeast autophagosomal membranes. Autophagy 6, 800-801.
Wang, X., Huynh, H., Gjorloff-Wingren, A., Monosov, E., Stridsberg, M., Fukuda, M., and Mustelin, T. (2002). Enlargement of secretory vesicles by protein tyrosine phosphatase PTP-MEG2 in rat basophilic leukemia mast cells and Jurkat T cells. Journal of immunology 168, 4612-4619.
Wang, Y., Vachon, E., Zhang, J., Cherepanov, V., Kruger, J., Li, J., Saito, K., Shannon, P., Bottini, N., Huynh, H., et al. (2005). Tyrosine phosphatase MEG2 modulates murine development and platelet and lymphocyte activation through secretory vesicle function. The Journal of experimental medicine 202, 1587-1597.
Ward, D.M., Pevsner, J., Scullion, M.A., Vaughn, M., and Kaplan, J. (2000). Syntaxin 7 and VAMP-7 are soluble N-ethylmaleimide-sensitive factor attachment protein receptors required for late endosome-lysosome and homotypic lysosome fusion in alveolar macrophages. Molecular biology of the cell 11, 2327-2333.
Wartosch, L., Gunesdogan, U., Graham, S.C., and Luzio, J.P. (2015). Recruitment of VPS33A to HOPS by VPS16 Is Required for Lysosome Fusion with Endosomes and Autophagosomes. Traffic 16, 727-742.
Weidberg, H., Shvets, E., Shpilka, T., Shimron, F., Shinder, V., and Elazar, Z. (2010). LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. The EMBO journal 29, 1792-1802.
Weinberger, A., Kamena, F., Kama, R., Spang, A., and Gerst, J.E. (2005). Control of Golgi morphology and function by Sed5 t-SNARE phosphorylation. Molecular biology of the cell 16, 4918-4930.
Wurmser, A.E., Sato, T.K., and Emr, S.D. (2000). New component of the vacuolar class C-Vps complex couples nucleotide exchange on the Ypt7 GTPase to SNARE-dependent docking and fusion. The Journal of cell biology 151, 551-562.
Xie, Z., Nair, U., and Klionsky, D.J. (2008). Atg8 controls phagophore expansion during autophagosome formation. Molecular biology of the cell 19, 3290-3298.
Xu, M.J., Sui, X., Zhao, R., Dai, C., Krantz, S.B., and Zhao, Z.J. (2003). PTP-MEG2 is activated in polycythemia vera erythroid progenitor cells and is required for growth and expansion of erythroid cells. Blood 102, 4354-4360.
Yamamoto, H., Kakuta, S., Watanabe, T.M., Kitamura, A., Sekito, T., Kondo-Kakuta, C., Ichikawa, R., Kinjo, M., and Ohsumi, Y. (2012). Atg9 vesicles are an important membrane source during early steps of autophagosome formation. The Journal of cell biology 198, 219-233.
Yu, L., McPhee, C.K., Zheng, L., Mardones, G.A., Rong, Y., Peng, J., Mi, N., Zhao, Y., Liu, Z., Wan, F., et al. (2010). Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465, 942-946.
Yuan, T., Wang, Y., Zhao, Z.J., and Gu, H. (2010). Protein-tyrosine phosphatase PTPN9 negatively regulates ErbB2 and epidermal growth factor receptor signaling in breast cancer cells. The Journal of biological chemistry 285, 14861-14870.
Zhao, R., Fu, X., Li, Q., Krantz, S.B., and Zhao, Z.J. (2003). Specific interaction of protein tyrosine phosphatase-MEG2 with phosphatidylserine. The Journal of biological chemistry 278, 22609-22614.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53578-
dc.description.abstractPTPN9 (非穿膜型蛋白質酪氨酸去磷酸酶九號) 是一個典型的酪氨酸去磷酸酶. 它可以拮抗酪氨酸磷酸酶的作用, 進而將酪氨酸上的磷酸根去除掉. PTPN9 已被報導過有多種功能, 例如抑制EGFR/Her2或是VEGFR的訊息傳遞網, 以及參與在胞泌泡囊的融合. 在這篇論文中, 我們研究了PTPN9在細胞自噬中的作用機制. 我們發現在人類子宮頸癌細胞HeLa中大量表現PTPN9會造成饑餓狀態下細胞自噬的通量加速, 並且很有可能是透過促進自噬小體和溶酶體的融合. 另一方面我們也觀察到在饑餓狀態下, PTPN9會與Atg16和Atg9在同樣的位置. 有趣的是PTPN9在一般狀態下是存在於初級內體以及在循環內體的細胞質面, 正是Atg16和Atg9所存在的胞器. 由上述的觀察我們假定PTPN9在饑餓狀態下會經由Atg16+Atg9+的小泡被招募到吞噬胞, 並促進自噬小體的形成. 我們也觀察到PTPN9會與細胞自噬專屬的SNARE作用. 此外, PTPN9大量表現可以促進去除細胞自噬專屬SNARE的酪氨酸磷酸化.zh_TW
dc.description.abstractPTPN9, also known as PTPmeg2, is a classical non-transmembrane protein tyrosine phosphatase that antagonizes the tyrosine phosphorylation exerted by protein tyrosine kinase. PTPN9 has been reported to have multiple functions, including EGFR/Her2 signal inactivation, VEGFR signal inactivation, and secretary vesicle fusion facilitation. In this study, we investigate the role of PTPN9 in autophagy. We discovered that overexpression of PTPN9 in HeLa cells accelerates the autophagic flux upon starvation, which is very likely through promoting the autolysosome fusion. Immunostaining assays showed that PTPN9 colocalizes with Atg16 and Atg9 upon starvation. Interestingly, under fed condition, PTPN9 localizes at early and recycling endosome, which is where Atg16 and Atg9 normally resides. These findings lead us to hypothesize that PTPN9 might be recruited to the phagophore via Atg16+Atg9+ vesicle, and facilitates autophagy. We also discovered that PTPN9 colocalizes and interacts with components of the autophagic SNARE complex. Furthermore, the tyrosine phosphorylation of autophagic SNARE can be reduced upon PTPN9 overexpression.en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:25:56Z (GMT). No. of bitstreams: 1
ntu-104-R02b46015-1.pdf: 10596672 bytes, checksum: adeed193760dd98d672b88108f6f5da1 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents中文摘要.........................................................................................................1
ABSTRAT .......................................................................................................2
INTRUDUCTION ............................................................................................ 3
1. Protein tyrosine phosphatase ................................................................... 3
(1) PTP overview ........................................................................................... 3
(2) PTPN9 ......................................................................................................4
2. Autophagy ............................................................................................... 8
(1) Autophagy overview ................................................................................ 8
(2) Autophagy induction ............................................................................... 9
(3) Autophagy initiation ..............................................................................11
(4) Autophagy nucleation ............................................................................12
(5) Phagophore elongation ......................................................................... 14
(6) Autophagosome maturation .................................................................. 15
(7) Lysosomal degradation and autophagy termination ................................17
3. SNAREs .................................................................................................. 19
(1) SNAREs overview ................................................................................... 19
(2) Autophagic SNAREs ................................................................................21
MATERIALS AND METHODS ..........................................................................26
1. Cell culture, transfection, and doxycycline treatment ..............................26
2. Plasmids and reagents ........................................................................... 26
3. Immunoprecipitation, sample preparation, and western blotting .............28
4. Immunofluorescence .............................................................................. 29
5. Puncta number counting, object colocalization, and statistics ................. 30
6. Antibody list............................................................................................31
RESULT .......................................................................................................32
PTPN9 overexpression results in the acceleration of autophagic flux ............32 Catalytic activity is required for PTPN9 to accelerate autophagic flux ...........33 PTPN9 overexpression does not affect autophagosome formation ...............33 PTPN9 colocalizes with Atg16 and Atg9 but not DFCP1 ...............................34 PTPN9 localizes at early and recycling endosome but not late endosome .....35 PTPN9 colocalizes with autophagic SNARE complex .................................... 35 PTPN9 interacts with SNAP29.......................................................................36
DISCUSSION ............................................................................................... 38 REFERENCES ............................................................................................... 41
FIGURES ......................................................................................................51
dc.language.isoen
dc.subject細胞自噬zh_TW
dc.subject細胞自噬專屬SNAREszh_TW
dc.subject自噬溶?體zh_TW
dc.subject非穿膜型蛋白質酪氨酸去磷酸?九號zh_TW
dc.subject非穿膜型蛋白質酪氨酸去磷酸?meg2zh_TW
dc.subjectautophagic SNAREsen
dc.subjectPTPmeg2en
dc.subjectPTPN9en
dc.subjectautophagyen
dc.subjectautolysosome fusionen
dc.title酪氨酸去磷酸酶N9在細胞自噬扮演角色之研究zh_TW
dc.titleThe role of Protein Tyrosine Phosphatase N9 in autophagyen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊維元,姚季光
dc.subject.keyword非穿膜型蛋白質酪氨酸去磷酸?九號,非穿膜型蛋白質酪氨酸去磷酸?meg2,細胞自噬,自噬溶?體,細胞自噬專屬SNAREs,zh_TW
dc.subject.keywordPTPN9,PTPmeg2,autophagy,autolysosome fusion,autophagic SNAREs,en
dc.relation.page59
dc.rights.note有償授權
dc.date.accepted2015-08-06
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
10.35 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved