請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53557完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳林祈 | |
| dc.contributor.author | Cheng-Chuan Chen | en |
| dc.contributor.author | 陳誠專 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:25:42Z | - |
| dc.date.available | 2018-08-07 | |
| dc.date.copyright | 2015-08-07 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-06 | |
| dc.identifier.citation | Alayoglu, S., A.U. Nilekar, M. Mavrikakis, and B. Eichhorn. 2008. Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat. Mater. 7(4): 333-338.
An, H., L.N. Pan, H. Cui, B.J. Li, D.D. Zhou, J.P. Zhai, and Q. Li. 2013. Synthesis and performance of palladium-based catalysts for methanol and ethanol oxidation in alkaline fuel cells. Electrochim. Acta 102: 79-87. An, L., T.S. Zhao, S.Y. Shen, Q.X. Wu, and R. Chen. 2011. Alkaline direct oxidation fuel cell with non-platinum catalysts capable of converting glucose to electricity at high power output. J. Power Sources 196(1): 186-190. Arico, A.S., S. Srinivasan, and V. Antonucci. 2001. DMFCs: from fundamental aspect to technology development. Fuel Cells 1(2): 133-161. Bambagioni, V., C. Bianchini, A. Marchionni, J. Filippi, F. Vizza, J. Teddy, P. Serp, and M. Zhiani. 2009. Pd and Pt–Ru anode electrocatalysts supported on multi-walled carbon nanotubes and their use in passive and active direct alcohol fuel cells with an anion-exchange membrane (alcohol = methanol, ethanol, glycerol). J. Power Sources 190(2): 241-251. Basu, D., and S. Basu. 2010. A study on direct glucose and fructose alkaline fuel cell. Electrochim. Acta 55(20): 5775-5779. Basu, D., and S. Basu. 2011. Synthesis, characterization and application of platinum based bi-metallic catalysts for direct glucose alkaline fuel cell. Electrochim. Acta 56(17): 6106-6113. Basu, D., and S. Basu. 2012. Performance studies of Pd-Pt and Pt-Pd-Au catalyst for electrooxidation of glucose in direct glucose fuel cell. Int. J. Hydrogen Energ. 37(6): 4678-4684. Basu, D., S. Sood, and S. Basu. 2013. Performance comparison of Pt-Au/C and Pt-Bi/C anode catalysts in batch and continuous direct glucose alkaline fuel cell. Chem. Eng. J. 228: 867-870. Becerik, I., and F. Kadirgan. 1992. The electrocatalytic properties of palladium electrodes for the oxidation of D-glucose in alkaline medium. Electrochim. Acta 37(14): 2651-2657. Bianchini, C., and P.K. Shen. 2009. Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem. Rev. 109(9): 4183-4206. Bockris, J.O., B.J. Piersma, and E. Gileadi. 1964. Anodic oxidation of cellulose and lower carbohydrates. Electrochim. Acta 9(10): 1329-1332. Brouzgou, A., L.L. Yan, S.Q. Song, and P. Tsiakaras. 2014a. Glucose electrooxidation over PdxRh/C electrocatalysts in alkaline medium. Appl. Catal. B: Environ. 147: 481-489. Brouzgou, A., S. Song, and P. Tsiakaras. 2014b. Carbon-supported PdSn and Pd3Sn2 anodes for glucose electrooxidation in alkaline media. Appl. Catal. B: Environ. 158: 209-216. Brunel, L., J. Deneele, K. Servat, K.B. Kokoh, C. Jolivalt, C. Innocent, M. Cretin, M. Rolland, S. Tingry. 2007. Oxygen transport through laccase biocathodes for a membrane-less glucose/O2 biofuel cell. Electrochem. Commun. 9(2): 331-336. Bullen, R.A., T.C. Arnot, J.B. Lakeman, and F.C. Walsh. 2006. Biofuel cells and their development. Biosens. Bioelectron. 21(11): 2015-2045. Cai, J.D., Y.Y. Huang, and Y.L. Guo. 2013. Bi-modified Pd/C catalyst via irreversible adsorption and its catalytic activity for ethanol oxidation in alkaline medium. Electrochim. Acta 99(22): 22-29. Cai, Z.X., C.C. Liu, G.H. Wu, X.M. Chen, and X. Chen. 2013. Palladium nanoparticles deposit on multi-walled carbon nanotubes and their catalytic applications for electrooxidation of ethanol. Electrochim. Acta 112: 756-762. Casado-Rivera, E., D.J. Volpe, L. Alden, C. Lind, C. Downie, T. Vazquez-Alvarez, A.C.D. Angelo, F.J. DiSalvo, and H.D. Abruna. 2004. Electrocatalytic activity of ordered intermetallic phases for fuel cell applications. J. Am. Chem. Soc. 126(12): 4043-4049. Chaudhuri, S.K., and D.R. Lovley. 2003. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol. 21(10): 1229-1232. Chen, X.M., Z.J. Lin, D.J. Chen, T.T. Jia, Z.M. Cai, X.R. Wang, X. Chen, G.N. Chen, and M. Oyama. 2010. Nonenzymatic amperometric sensing of glucose by using palladium nanoparticles supported on functional carbon nanotubes, Biosens. Bioelectron. 25(7): 1803-1808. Chen, X.M., G.H. Wu, Y.Q. Jiang, Y.R. Wang, and X. Chen. 2011. Graphene and graphene-based nanomaterials: the promising materials for bright future of electroanalytical chemistry. Analyst. 1369(22): 4631-4640. Chen, C.C., C.L. Lin, and L.C. Chen. 2015. Functionalized carbon nanomaterial supported palladium nano-catalysts for electrocatalytic glucose oxidation reaction. Electrochim. Acta 152(10): 408-416. Cui, H.F., J.S. Ye, X. Liu, W.D. Zhang, and F.S. Sheu. 2006. Pt-Pb alloy nanoparticle/carbon nanotube nanocomposite: a strong electrocatalyst for glucose oxidation. Nanotechnology 17(9): 2334-2339. De Wit, G., J.J. de Vlieger, A.C. Kock-van Dalen, R. Heus, R. Laroy, A.J. van Hengstum, A.P.G. Kieboom, and H. van Bekkum. 1981. Catalytic dehydrogenation of reducing sugars in alkaline solution. Carbohyd. Res. 91(2): 125-138. EI-Refaei Sayer, M., M.I. Award, B.E. EI-Anadouli, and M.M. Saleh. 2013. Electrocatalytic glucose oxidation at binary catalyst of nickel and manganese oxides nanoparticles modified glassy carbon electrode: Optimization of the loading level and order of deposition. Electrochim. Acta 92: 460-467. Ernst, S., J. Heitbaum, and C.H. Hamann. 1979. The electrooxidation of glucose in phosphate buffer solutions: Part I. Reactivity and kinetics below 350 mV/RHE. J. Electroanal. Chem. 100(1): 173-183. Essis Yei, L.H., B. Beden, and C. Lamy. 1988. Electrocatalytic oxidation of glucose at platinum in alkaline medium: on the role of temperature. J. Electroanal. Chem. 246(2): 349-362. Fang, W.C., J.H. Huang, C.L. Sun, L.C. Chen, P. Papakonstantinou, and K.H. Chen. 2006. Superior electrochemical performance of CNx nanotubes using TiSi2 buffer layer on Si substrates. J. Vac. Sci. Technol. B 24(87): 87-90. Fievet, F., J.P. Lagier, B. Blin, B. Beaudoin, and M. Figlarz. 1989. Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles. Solid State Ionics 32(1): 198-205. Fujiwara, N., S. Yamazaki, Z. Siroma, T. Ioroi, H. Senoh, and K. Yasuda. 2009. Nonenzymatic glucose fuel cells with an anion exchange membrane as an electrolyte. Electrochem. Commun. 11(2): 390-392. Grden, M., and A. Czerwinski. 2008. EQCM studies on Pd–Ni alloy oxidation in basic solution. J. Solid State Chem. 12(4): 375-385. Guo, J.W., T.S. Zhao, J. Prabhuram, R. Chen, and C.W. Wong. 2005. Preparation and characterization of a PtRu/C nanocatalyst for direct methanol fuel cells. Electrochim. Acta 51(4): 754-763. Hu, C., X. He., and C. Xia. 2010. Pt hierarchical structure catalysts on BaTiO3/Ti electrode for methanol and ethanol electrooxidations. J. Power Sources 195(6): 1594-1598. Hu, C.C., and T.C. Wen. 1994. Voltammetric investigation of palladium oxides-II. Their formation/reduction behaviour during glucose oxidation in NaOH. Electrochim. Acta 39(18): 2763-2771. Hu, F., C. Chen, Z. Wang, G. Wei, and P.K. Shen. 2006. Mechanistic study of ethanol oxidation on Pd-NiO/C electrocatalyst. Electrochim. Acta 52(3): 1087-1091. Huang, Y.Y., J.D. Cai, M.Y. Liu, and Y.L. Guo. 2012. Fabrication of a novel PtPbBi/C catalyst for ethanol electro-oxidation in alkaline medium. Electrochim. Acta 83(30): 1-6. Hussein, L., Y.J. Feng, N. Alonso-Vante, G. Urban, and M. Krüger. 2011. Functionalized-carbon nanotube supported electrocatalysts and buckypaper-based biocathodes for glucose fuel cell applications. Electrochim. Acta 56(22): 7659-7665. Infomine. 2015. Commodity and Metal Prices, unite State. Available at: http://www.infomine.com/investment/metal-prices/. Jang, J.H., C. Pak, and Y.U. Kwon. 2012. Ultrasound-assisted polyol synthesis and electrocatalytic characterization of PdxCo alloy and core-shell nanoparticles. J. Power Sources 201: 179-183. Jiang, T., L. Yan, Y. Meng, M. Xiao, Z. Wu, P. Tsiakaras, and S. Song. 2015. Glucose electrooxidation in alkaline medium: Performance enhancement of PdAu/C synthesized by NH3 modified pulse microwave assisted polyol method. Appl. Catal. B: Environ. 162: 275-281. Jin, C. and I. Taniguchi. 2007. Electrocatalytic activity of silver modified gold film for glucose oxidation and its potential application to fuel cells. Mater. Lett. 61(11): 2365-2367. Kakati, N., J. Maiti, S.H. Lee, and Y.S. Yoon. 2012. Core shell like behavior of PdMo nanoparticles on multiwall carbon nanotubes and their methanol oxidation activity in alkaline medium. Int. J. Hydrogen Energy. 37(24): 19055-19064. Kang, Y., and C.B. Murray. 2010. Synthesis and electrocatalytic properties of cubic Mn-Pt nanocrystals (nanocubes). J. Am. Chem. Soc. 132(22): 7568-7569. Katz, E., and I. Willner. 2003. A biofuel cell with electrochemically switchable and tunable power output. J. Am. Chem. Soc. 125(22): 6803-6813. Kerzenmacher, S., J. Ducree, R. Zengerle, and F. von Stetten. 2008. Energy harvesting by implantable abiotically catalyzed glucose fuel cells. J. Power Sources 182(1): 1-17. Kim, H.H., N. Mano, X.C. Zhang, and A. Heller. 2003. A miniature membrane-less biofuel cell operating under physiological conditions at 0.5 V. J. Electrochem. Soc. 150(2): A209-A213. Koenigsmann, C., W.P. Zhou, R.R. Adzic, E. Sutter, and S.S. Wong. 2010. Size dependent enhancement of electrocatalytic performance in relatively defect free, process ultrathin platinum nanowire. Nano Lett. 10(8): 206-2811. Kuwahara, T., K. Oshima, M. Shimomura, and S. Miyauchi. 2007. Properties of the enzyme electrode fabricated with a film of polythiophene derivative and its application to a glucose fuel cell. J. Appl. Polym. Sci. 104(5): 2947-2953. Li, L., K. Scott, and E.H. Yu. 2013. A direct glucose alkaline fuel cell using MnO2–carbon nanocomposite supported gold catalyst for anode glucose oxidation. J. Power Sources. 221(1): 1-5. Liang, Z.X., T.S. Zhao, J.B. Xu, and L.D. Zhu. Mechanism study of the ethanol oxidation reaction on palladium in alkaline media. Electrochim. Acta 54(8) (2009) 2203-2208. MacAodha, D., P.Ó. Conghaile, B. Egan, P. Kavanagh, and D. Leech. 2013. Membraneless glucose/oxygen enzymatic fuel cells using redox hydrogel films containing carbon nanotubes. Chem. Phys Chem. 14(14): 2302-2307. Mano, N., F. Mao, and A. Heller. 2003a. Characteristics of a miniature compartment-less glucose-O2 biofuel cell and its operation in a living plant. J. Am. Chem. Soc. 125(21): 6588-6594. Mano, N., Mao, F., Shin, W., Chen, T., Heller, A., 2003b. A miniature biofuel cell operating at 0.78 V. Chem. Commun. 2003:518-519. Ostwald, W. 1984. Z. Elektrochem. 1: 122. Pasta, M., R. Ruffo, E. Fallett, C.M. Mari, and C. Della Pina. 2010. Alkaline glucose oxidation on nanostructured gold electrodes. Gold Bull. 43(1): 55-64. Pizzariello, A., M. Stred'ansky, S. Miertus. 2002. A glucose/hydrogen peroxide biofuel cell that uses oxidase and peroxidase as catalysts by composite bulk-modified bioelectrodes based on a solid binding matrix. Bioelectrochemistry 56(1): 99-105. Popovic, K.D., A.V. Tripkovic, and R.R. Adzic. 1992. Oxidation of D-glucose on single-crystal platinum electrodes: A mechanistic study. J. Electroanal. Chem. 339(1): 227-245. Rabaey, K., N. Boon, S.D. Siciliano, M. Verhaege, and W. Verstraete. 2004. Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl. Environ. Microbiol. 70(9): 5373-5382. Rashid, M., T.S. Jun, Y. Jung, and Y.S. Kim. 2015. Bimetallic core-shell Ag@Pt nanoparticle-decorated MWCNT electrodes for amperometric H2 sensors and direct methanol fuel cells. Sensor Actuat. B. 208: 7-13. Rauber, M., I. Alber, S. Muller, R. Neuamann, O. Picht, C. Roth, A. Schökel, M.E. Toimil-Molares, and W. Ensinger. 2011. Highly-ordered supportless three dimensional nanowire networks with tunable complexity and interwire connectivity for device integration. Nano Lett. 11(6): 2304-2310. Sakai, H., T. Nakagawa, Y. Tokita, T. Hatazawa, T. Ikeda, S. Tsujimura, and K. Kano, 2009. A high-power glucose/oxygen biofuel cell operating under quiescent conditions. Energ. & Environ. Sci. 2: 133-138. Sharaf, O.Z., and M.F. Orhan. 2014. An overview of fuel cell technology: fundamentals and applications. Renew. Sust. Energ. Rev. 32: 810-853. Scherbahn, V., M.T. Putze, B. Dietzel, T. Heinlein, J.J. Schneider, and F. Lisdat. 2014. Biofuel cells based on direct enzyme–electrode contacts using PQQ-dependent glucose dehydrogenase/bilirubin oxidase and modified carbon nanotube materials. Biosens. Bioelectron. 61: 631-638. Shen, S.Y., T.S. Zhao, J.B. Xu, and Y.S. Li. 2010. Synthesis of PdNi catalysts for the oxidation of ethanol in alkaline direct ethanol fuel cells. J. Power Sources 195(4): 1001-1006. Simões M., S. Baranton, and C. Coutanceau. 2011. Selective oxidation of alcohols and aldehydes on metal catalysts. Appl. Catal. B: Environ. 110(1): 40-49. Stetten, F., S. Kerzenmacher, A. Lorenz, V. Chokkalingam, N. Miyakawa, R. Zengerle, and J. Ducree. 2006. A one-compartment, direct glucose fuel cell for powering long-term medical implants. Proceeding of the 19th International Conference on Micro Electro Mechanical Systems. MEMS, 934-937. Istanbul, Turkey. Tan, Z., H. Abe, and S. Ohara. 2011. Ordered deposition of Pd nanoparticles on sodium dodecyl sulfate-functionalized single-walled carbon nanotubes. J. Mater. Chem. 21(32): 12008-12014. Tao, B., J. Zhang, S. Hui, X. Chen, and L. Wan. 2010. An electrochemical methanol sensor based on a Pd–Ni/SiNWs catalytic electrode. Electrochim. Acta 55(17): 5019-5023. Toghill, K.E., and R.G. Compton. 2010. Electrochemical non-enzymatic glucose sensors: A perspective and an evaluation. Int. J. Electrochem. Sci. 5(9): 1246-1301. Wang, G.W., J.H. Ahn, J. Yao, M. Lindsay, H.K. Liu, and S.X. Dou. 2003. Preparation and characterization of carbon nanotubes for energy storage. J. Power Sources 1: 16-23. Warner, H., and B.W. Robinson. 1967. Digest of the Seventh International Conference on Medical and Biological Engineering. p. 520. Stockholm, Sweden. Wei, Y.C., C.W. Liu, W.D. Kang, C.M. Lai, L.D. Tsai, and K.W. Wang. 2011. Electro-catalytic activity enhancement of Ni@Pd electrocatalysts for the ethanol electro-oxidation in alkaline medium: The promotional effect of CeO2 addition, J. Electroanal. Chem. 660(1): 64-70. Wei, Z.D., C. Yan, Y. Tan, L. Li, C.X. Sun, Z.G. Shao, P.K. Shen, and H.W. Dong. 2008. Spontaneous reduction of Pt(IV) onto the sidewalls of functionalized multiwalled carbon nanotubes as catalysts for oxygen reduction reaction in PEMFCs, J. Phys. Chem. C 112(7): 2671-2677. Wenkin, M., P. Ruiz, B. Delmon, and M. Devillers. 2002. The role of bismuth as promotor in Pd-Bi catalysts for the selective oxidation of glucose to gluconat, J. Mol. Catal. 180: 141-159. Wilde, C.P., and M.J. Zhang. 1993. Oxidation of glucose at electrodeposited platinum electrodes in alkaline solution. J. Chem. Soc. Faraday T. 89(2): 385-389. Xu, C., P.K. Shen, and Y. Liu. 2007. Ethanol electrooxidation on Pt/C and Pd/C catalysts promoted with oxide. J. Power Sources 164(2): 527-531. Yan, L.L., A. Brouzgou, Y.Z. Meng, M. Xiao, P. Tsiakaras, and S.Q. Song. 2014. Efficient and poison-tolerant PdxAuy/C bimetallic electrocatalysts for glucose electrooxidation in alkaline medium. Appl. Catal. B: Environ. 150: 268-274. Yan, Y., W. Zheng, L. Su, and L. Mao. 2006. Carbon-Nanotube-Based glucose/O2 biofuel cells. Adv. Mater. 18(19): 2639-2643. Yang, J., C. Tian, L. Wang, and H. Fu. 2011. An effective strategy for small-sized and highly-dispersed palladium nanoparticles supported on graphene with excellent performance for formic acid oxidation. J. Mater Chem. 21(1): 3384-3390. Yoo, E., T. Okata, T. Akita, M. Kohyama, J. Nakamura, and I. Honma. 2009. Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. Nano Letters. 9(6): 2255-2259. Yu, C.M., M.J. Yen, and L.C. Chen. 2010. A bioanode based on MWCNT/ protein-assisted co-immobilization of glucose oxidase and 2,5-dihydroxybenzaldehyde for glucose fuel cells. Biosens. Bioelectron. 25(11): 2515-2521. Zhang, H., X. Xu, P. Gu, C. Li, P. Wu, and C. Cai. 2011. Microwave-assisted synthesis of graphene-supported Pd1Pt3 nanostructures and their electrocatalytic activity for methanol oxidation. Electrochim. Acta 56(20): 7064-7070. Zhang, B., D. Ye, J. Li, X. Zhu, and Q. Liao. 2012. Electrodeposition of Pd catalyst layer on graphite rod electrodes for direct formic acid oxidation. J. Power Sources 214: 277-284. Zhang, H., X.Q. Xu, Y.J. Yin, P. Wu, and C.X. Cai. 2013. Nonenzymatic electrochemical detection of glucose based on Pd1Pt3–graphene nanomaterials. Electroanal. Chem. 690: 19-24. Zhang, M., Z. Yan, and J. Xie. 2012. Core/shell nanoparticles supported on MWCNTs at improved electrocatalytic performance for alcohol oxidation in alkaline media. Electrochim. Acta 77: 237–243. Zheng, H.T., Y.L. Li, S.X. Chen, and P.K. Shen. 2006. Effect of support on the activity of Pd electrocatalyst for ethanol oxidation. J. Power Sources 163(1): 371-375. Zebda A., C. Gondran, A.L. Goff, M. Holzinger, P. Chiquin, and S. Cosnier. 2011. Mediatorless high-power glucose biofuel cells based on compressed carbon nanotube-enzyme electrode. Nature Commun. 2: 2011. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53557 | - |
| dc.description.abstract | 本論文主要研究方向著重於開發新型鈀基奈米觸媒並應用於葡萄糖電催化。首先,使用具有不同表面性質之奈米碳材料作為鈀奈米粒子的載體,並進而找到適合使用在多元醇還原法之碳載體。隨後採用一鍋式和兩步驟式多元醇還原法在酸化多壁型奈米碳管上合成出鈀-鉍雙金屬觸媒及鈀-鎳殼核型觸媒。本研究所開發出之鈀基雙金屬觸媒能有效增加觸媒表面活性面積、提升葡萄糖催化能力和改善觸媒使用的長效穩定性。此鈀基觸媒研究結合廣泛的物理化學性質鑑定和電化學分析方法,並在一系列的研究中探討不同鈀基奈米觸媒的材料特性和其對葡萄糖的催化性能,最終期望找到具有較高催化活性的鈀基觸媒。本論文研究宗旨為開發具低成本、高效能和高穩定性之鈀基奈米觸媒陽極。
第一部分,在研究初期將鈀奈米粒子還原修飾在不同碳載體表面,並探討所合成之觸媒材料對葡萄糖電催化的性質。所選用的碳載體材料包含未修飾型多壁奈米碳管、酸化多壁奈米碳管、胺基化多壁奈米碳管、氫氧基化多壁奈米碳管、酸化石墨烯和碳黑。鈀奈米粒子藉由使用乙二醇作為還原劑的多元醇還原法將鈀前驅物還原至碳載體表面。並使用電化學分析法探討碳載體表面官能基對所合成之鈀奈米觸媒在鹼性溶液中對葡萄糖電催化的影響性。根據穿透式電子顯微鏡觀察可知鈀奈米粒子尺寸介於4.5 nm至7.4 nm。電化學循環伏安法分析結果顯示具表面修飾之碳載體可有效提升鈀奈米觸媒之催化活性。在此研究使用的碳載體中,酸化多壁奈米碳管相較於未修飾型多壁型奈米碳管可提升6.2倍的葡萄糖催化電流並降低100 mV的過電位值。此外,鈀修飾酸化多壁型奈米碳管亦具有最低的塔佛斜率92 mV和最佳的觸媒長效穩定性。由此研究結果可知,藉由乙二醇還原法可成功地將鈀奈米粒子還原至不同碳載體的表面,其中酸化多壁型奈米碳管是較佳的碳載體選擇。故在後續鈀基奈米雙金屬觸媒的研究中,採用酸化多壁型奈米碳管作為碳載體材料。 第二部分,採用一鍋式多元醇還原法製備鈀-鉍奈米粒子修飾酸化多壁奈米碳管。在X射線繞射圖譜顯示鉍金屬是以非晶型態存在於鈀-鉍雙金屬中,並由X射線光電子能譜結果可知鉍金屬是以三氧化二鉍之化學組態存在。在此鈀基雙金屬觸媒研究中,藉由循環式伏安法、塔佛分析法和計時安培分析法找到一較佳鈀-鉍含量比例之雙金屬觸媒。相較於單一鈀金屬修飾酸化多壁奈米碳管;鈀-鉍雙金屬觸媒最高可提升40 %之葡萄糖催化電流密度。由觸媒毒化速率研究中可知,鉍金屬的添加可有效改善中間產物的毒化程度。在200圈循環伏安法掃描結果,發現鈀-鉍(1:0.14)具較高的活性維持度97 %。此研究亦對不同葡萄糖濃度、氫氧化鈉濃度和操作溫度對催化電流的影響性作完整的探討。在此章節,鈀-鉍(1:0.14)修飾酸化奈米碳管在一最佳化條件下可獲得的最高葡萄糖催化電流密度為29.5 mA cm-2。 第三部分, 採用兩步驟還原法合成鈀-鎳修飾酸化多壁奈米碳管之核殼型奈米觸媒。此核殼型結構可有效提高鈀觸媒的使用率、增加觸媒表面的活性面積和觸媒的使用穩定性。此核殼結構藉由高解析電子穿透顯微鏡和掃描式電子穿透顯微鏡分析,可證實內核鎳奈米粒子包覆在外殼鈀金屬中。並由葡萄糖電催化分析結果顯示鈀-鎳核殼型觸媒可提升表面活性面積、催化電流密度和觸媒穩定性。其中,鈀-鎳(1:0.06)觸媒具有最高的表面活性面積(78.0 m2 g-1)和葡萄糖催化電流密度(21.2 mA cm-2)。並由觸媒毒化速率研究和200圈循環伏安法掃描可知,鈀觸媒可由鎳金屬添加後產生協同效應進而改善鈀基觸媒的穩定性。在此章節的研究結果顯示,最高葡萄糖電催化電流密度42.5 mA cm-2可在1.0 mol L-1 氫氧化鈉和0.5 mol L-1葡萄糖溶液於313 K環境中達到。 最後,將所合成之鈀基雙金屬奈米觸媒作為陽極電極,應用於質子交換膜式直接型葡萄糖燃料電池。鈀-鉍(1:0.14)雙金屬觸媒和鈀-鎳(1:0.06)核殼型觸媒之陽極搭配白金鈮網陰極,在自製鹼性葡萄糖燃料電池模組下進行探討。由線性掃描伏安法結果可知,在槽式鹼性直接型葡萄糖燃料電池架構下,使用鈀-鉍(1:0.14)雙金屬觸媒作為陽極可達到3.0 mW cm-2的輸出功率。 | zh_TW |
| dc.description.abstract | This main research direction of this dissertation is to develop novel palladium (Pd) based nanocatalysts for alkaline glucose electrooxidation. The different carbon materials for Pd nanoparticle decoration are investigated to obtain a proper catalyst support for Pd decoration. The one-pot poly method and two-stage polyol synthesis process were proposed to obtain palladium-bismuth (Pd-Bi) bimetallic catalysts and palladium-nickel core-shell catalysts (Pd-Ni), respectively. The prepared carboxylated multi-walled carbon nanotubes (cMWCNT) supported Pd-based bimetallic catalysts aim to improve the active surface, catalytic performance, and catalysis durability toward glucose oxidation reaction (GOR). The electrochemical and physicochemical properties are comprehensively characterized and discussed to find out the idea Pd-based catalyst for the further discussion. The objective of this study is to develop Pd-based anode catalysts for the application of direct glucose fuel cell with the advantages of a low-cost, a high efficiency, and an improved stability.
At first, a series of investigation was discussed on different carbon materials supported Pd nanocatalysts. The carbon materials used in this study are pristine multi-walled carbon nanotubes (pMWCNT), carboxylated MWCNT (cMWCNT), amine-modified MWCNT (nMWCNT), hydroxyl-modified MWCNT (oMWCNT), XC72 carbon black (XC72), and carboxylated graphene (cGraphene). Nanosized Pd particles were decorated on these carbon supports by an alkaline one-pot polyol method via the reduction of palladium chloride hydrate (PdCl2). The electrochemical behaviors of alkaline GORs on the prepared Pd nanocatalysts were studied in this part to understand the influences of carbon functionality. Among the functionalized MWCNTs, cMWCNT shows a 6.2-fold higher GOR current density and a 100 mV lower over-potential compared to pMWCNT. In addition, cMWCNT supported Pd nanocatalyst has the lowest Tafel slope of 92 mV dec-1 and the highest stability of The 500 continuous GOR cycles in this study. The results indicate that cMWCNT will be a promising carbon support for the decoration of Pd nanoparticles by a polyol method. In this part, cMWCNT had been known as an idea catalyst support material for the further studies of Pd-based catalysts catalyzed GOR. In the second part, the palladium-bismuth decorated cMWCNT catalysts (Pd-Bi/C) were prepared via a one-pot polyol method. The XRD data shows that Bi elements existed in the Pd-Bi/C are amorphous phase as Bi oxides. It was found that Pd-Bi/C (1:0.14) can significantly enhance the electrocatalytic activity on GOR about 40% times higher than Pd decorated cMWCNT (Pd/C) and as well as has a 3.7-fold lower poisoning rate. Moreover, the in-use stability of Pd-Bi/C (1:0.14) is remarkably improved. The effects of the operating temperature and the concentration of glucose and NaOH electrolyte on Pd-Bi/C were further investigated in this study. In this part, the highest Pd-Bi/C catalyzed GOR current density of 29.5 mA cm-2 is attained in alkaline medium. In the third part, the cMWCNT supported palladium-nickel bimetallic catalysts (Pd-Ni/C) with a core-shell structure were employed to increase the utilization of Pd nanocatalysts. The PdshellNicore catalysts decorated cMWCNT were prepared by a facile two-stage polyol method. High resolution transmission electron microscopy (HR-TEM) and scanning transmission electron microscope (STEM) were used to identify the core-shell structure and analyze the elemental distribution of Pd-Ni nanoparticles. From the results of the electrocatalytic studies, the prepared PdshellNicore can obviously improve the GOR electrocatalytic activity and catalyst stability. The electrochemical results indicate that Pd-Ni/C (1:0.06) exhibits the highest electrochemical active surface area of 78.0 m2 g-1 which is 4.5 times higher than that of Pd/C and as well as has a 1.5-fold higher GOR current density of 21.2 mA cm-2. In this part, the highest Pd-Ni/C (1:0.06) catalyzed GOR current density of 42.5 mA cm-2 is attained in 0.5 mol L-1 glucose and 1.0 mol L-1 NaOH alkaline medium at 313 K. The prepared Pd-based catalysts (Pd-Bi/C and Pd-Ni/C) coated glassy electrodes were applied to be anodes in the home-made direct glucose fuel cells. A platinum-niobium (Pt-Nb) cathode electrode and a Nafion® 117 proton exchange membrane were employed in this fuel cell system. In this study, 0.5 M mol L-1 glucose and 1.0 mol L-1 NaOH was used as a fuel in anode electrolyte and oxygen is used as an oxidizing agent. The power out of the constructed batch type direct glucose fuel cells and membrane electrode assemblies (MEA) were investigated in this study. From the results of the low-scan rate linear sweep voltammetry (LSV) investigation, the maximum power output of 3.0 mW cm-2 was attained in the Pd-Bi/C anode based batch type DGFC in this study. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:25:42Z (GMT). No. of bitstreams: 1 ntu-104-D99631002-1.pdf: 11909059 bytes, checksum: ee540f72138f10aa86efe3d9a0c35fe7 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | Table of contents
Acknowledgement i Chinese abstract iii English abstract v Table of contents viii List of tables xiii List of figures xv Notations xxii Chapter 1 Introduction 1 1.1 Background of direct glucose fuel cell 1 1.2 Motive and research aspect of catalysts for glucose oxidation reaction 7 1.3 Dissertation framework 12 Chapter 2 Theory and Methodology 14 2.1 Principle of fuel cell 14 2.2 Electrochemical surface area measurement 17 2.3 Electrochemical reaction on glucose electrooxidation 18 2.4 Electrochemical glucose oxidation kinetic 19 2.5 Stability study of Pd-based catalysts 20 2.6 Performance characterization of direct glucose fuel cell 21 Chapter 3 Experimental 23 3.1 Reagents and instruments 23 3.1.1 Reagents 23 3.1.2 Instruments 25 3.2 Three electrode system 27 3.3 Fuel cell system 28 3.4 Synthesis and characterization of carbon supported Pd-based catalysts 29 3.4.1 Polyol method 29 3.4.2 Physical characterization of catalysts 32 3.4.3 Electrochemical study of Pd-based catalysts 36 3.4.4 Anode electrode preparation 37 3.4.5 Cyclic voltammetry 38 3.4.6 Linear sweep voltammetry 38 3.4.7 Chronoamperometry 38 Chapter 4 Carbon materials supported palladium nanocatalysts 39 4.1 Palladium decorated functionalized carbon supports for GOR 39 4.2 Preparation of carbon supported Pd nanocatalysts 41 4.3 Physical property characterization 41 4.3.1 XPS analysis 41 4.3.2 XRD analysis 43 4.3.3 TGA analysis 44 4.3.4 TEM morphological and structural characteristics 45 4.4 Electrochemical characterization 50 4.4.1 ECSA estimation 50 4.4.2 CV characterization for Pd-catalyzed GOR 53 4.4.3 Tafel characterization 54 4.5 Study of catalyst stability 55 4.5.1 CA measurement 55 4.5.2 Multi-cycle CVs 56 4.5.3 The role of carboxylated functionality on MWCNT 57 Chapter 5 cMWCNT supported palladium-bismuth nanocatalysts 59 5.1 GOR performance improvement on Pd-Bi/C 59 5.2 One-pot poly method for Pd-Bi/C preparation 60 5.3 Physical characterization 61 5.3.1 XRD and SEM-EDS analysis 61 5.3.2 TEM morphological and structural characteristics 65 5.3.3 XPS analysis 69 5.4 Electrochemical characterization 70 5.4.1 ECSA estimation 70 5.4.2 CV characterization for the Pd-Bi/C catalyzed GOR 73 5.4.3 Tafel characterization 74 5.4.4 CA measurement 78 5.4.5 Multi-cycle CVs 80 5.4.6 Optimize the operating conditions 81 5.5 The role of bismuth oxide in Pd-Bi/C 84 Chapter 6 cMWCNT supported Pd-Ni catalysts 86 6.1 Enhancement of catalysts’ utilization on Pd-Ni/C 86 6.2 Pd-Ni/C catalysts preparation 88 6.3 Physiochemical characterization 89 6.3.1 XRD analysis 89 6.3.2 TEM morphological and structural characteristics 91 6.3.3 SEM-EDS characterization 96 6.4 Electrochemical characterization 97 6.4.1 ECSA estimation 97 6.4.2 CV characterization for the Pd-Ni/C catalyzed GOR 99 6.4.3 Tafel characterization 100 6.4.4 Stability evaluation 102 6.4.5 Optimize the operating conditions 105 6.5 The synergistic effect of Pd-Ni/C 108 Chapter 7 Conclusions and suggestions 109 7.1 Conclusions 109 7.1.1 Summary of functionalized carbon supported Pd catalysts 111 7.1.2 Summary of Pd-Bi bimetallic catalysts 111 7.1.3 Summary of Pd-Ni core-shell catalysts 112 7.2 Suggestions 112 Chapter 8 References 114 Appendix A Supplement in Chapter 3 121 Study of Pd-based catalyst synthesis method 121 Appendix B Supplements in Chapter 5 122 B.1 Application of Pd-Bi/C in a batch DGFC 122 B.2 DGFC MEA with a Pd-Bi/C anode 123 Appendix C Supplement in Chapter 6 125 Application of Pd-Ni/C in a batch DGFC 125 Appendix D Author`s profile 126 List of tables Table 1-1 Performances of different enzymatic biofuel cells………………...……….…...6 Table 1-2 Price of commonly used metals for electrocatalysts ………………….......……7 Table 1-3 Comparison between different metal anode catalysts catalyzed glucose…..8 Table 1-4 GOR performances comparison on Pd-based bimetallic catalysts……….10 Table 3-1 Reagents used in Pd-based catalysts toward GOR experiments…………… 23 Table 3-2 Instruments used in Pd-based catalysts toward GOR experiments…….…..25 Table 4-1 Summary of particle sizes of Pd/C catalysts from different physicochemical analyses.……………………………………...………….……….49 Table 4-2 Comparison between the electrocatalytic GOR properties of Pd/C catalysts ………………………………………….…………………………………….. 52 Table 5-1 Physicochemical characterization of Pd-Bi/C catalysts from the XRD, SEM-EDS, and TEM measurements ………………...…………………….….....68 Table 5-2 Comparison between the electrocatalytic GOR properties of Pd-Bi/C catalysts characterized by cyclic voltammograms…….…...………….……… 72 Table 5-3 Kinetic parameters of Pd-Bi/C catalysts determined by the linear polarization analysis ………………………………………………………………...77 Table 6-1 Physicochemical properties of Pd-Ni/C catalysts from TEM and XRD analysis ………………………………………….……………………………………... 94 Table 6-2 Comparison between the electrocatalytic GOR properties of Pd-Ni/C catalysts ………………………………………………………….……………….……98 Table 7-1 Alkaline GOR performances of the prepared Pd-based catalysts…..….110 List of figures Fig. 1-1 Fundamental science and engineering discipline of fuel cell development …... 4 Fig. 1-2 Comparison between the electrochemical engine and the heat engine ……...…. 5 Fig. 1-3 Tentative oxidation pathways and intermediates of glucose oxidation ..…....….5 Fig. 1-4 Preliminary study of I-V-P curves on Pd-based catalysts in a batch DGFC …11 Fig. 1-5 The doctoral research framework …………..……………...…………………………13 Fig. 2-1 Illustration of a basic fuel cell ………………………...…………...……………..……14 Fig. 2-2 Schematic of the current-potential curve for a fuel cell ……………...……..……16 Fig. 2-3 ECSA cyclic voltammogram of a Pd-based catalyst……………..……...….….…17 Fig. 2-4 Cyclic voltammogram of a typical Pd catalyzed GOR ……………...…….…..…19 Fig. 2-5 Tafel plot of the linear sweep voltammetry …………………………..…….…….... 20 Fig. 2-6 The poisoning rate curve of the CA method ……………………………….….…. 21 Fig. 2-7 The Current-voltage curve and the electrical power plot of a fuel cell……….22 Fig. 3-1 Three-electrode electrochemical cell combined with PGSTAT30 ……………..27 Fig. 3-2 Schematic of the two-electrode batch DGFC ………………..……………....….….28 Fig. 3-3 Schematic of the DGFC with an electrochemical analyzer ……..……..….….… 29 Fig. 3-4 The preparation process of polyol method for Pd-based catalysts …………….31 Fig. 3-5 Schematic of thermogravimetric analysis ……………………...…………….…….. 32 Fig. 3-6 Schematic of X-ray diffractometer analysis ……………..…………...…….……… 33 Fig. 3-7 Schematic of scanning electron microscope analysis …………………………….34 Fig. 3-8 Schematic of transmission electron microscopy analysis………………………..34 Fig. 3-9 Schematic of high resolution transmission electron microscopy analysis …...35 Fig. 3-10 Schematic of X-ray photoelectron spectrometer analysis …..………..….….…...36 Fig. 3-11 Illustration of a Pd-based catalyst anode electrode ………………………….….... 37 Fig. 4-1 The XPS spectra of pMWCNT and cMWNCT in O (1s) region ……….…... 42 Fig. 4-2 The XPS spectra of poly method treated pMWCNT and cMWCNT ......…….. 42 Fig. 4-3 The XRD patterns of Pd/C catalysts ………………………….…………………..…. 44 Fig. 4-4 The TGA plots of Pd/C catalysts ………………………………….……………..…... 45 Fig. 4-5 TEM images of the Pd/C catalysts: (a) Pd/pMWCNT, (b) Pd/cMWCNT, (c) Pd/nMWCNT, (d) Pd/oMWCNT, (e) Pd/XC72, and (f) Pd/cGraphene............ 47 Fig. 4-6 Size distributions of Pd nanoparticles: (a) Pd/pMWCNT, (b) Pd/cMWCNT, (c) Pd/nMWCNT, (d) Pd/oMWCNT, (e) Pd/XC72, and (f)Pd/cGraphene…...48 Fig. 4-7 ECSA cyclic voltammograms of Pd/C catalysts ………………………………….. 51 Fig. 4-8 GOR cyclic voltammograms of Pd/C catalysts …………………….……….….….53 Fig. 4-9 Linear sweep voltammograms of Pd/C catalysts for GOR………………………54 Fig. 4-10 Tafel plots of Pd/C catalysts for GOR ………………………………………………. 55 Fig. 4-11 The CA measurements of Pd/C catalysts ……………...…………………….……... 56 Fig. 4-12 GOR multi-cycling stability of Pd/C catalysts …………………………………….57 Fig. 4-13 A proposed reaction scheme for Pd nanoparticles decorated cMWCNT ….…58 Fig. 5-1 One-pot polyol synthesis of cMWCNT supported Pd-Bi catalysts ….………...61 Fig. 5-2 X-ray diffraction characterization of Pd-Bi/C catalysts…………………………. 62 Fig. 5-3 The SEM-EDS analysis of Pd-Bi/C catalysts: (a) Pd/C, (b) Pd-Bi/C (1:0.03), (c) Pd-Bi/C (1:0.07), (d) Pd-Bi/C (1:0.14), (e) Pd-Bi/C (1:0.25), (f) Pd-Bi/C (1: 0.5), and (g) Pd-Bi/C (1:1) …………………………………………..…………….64 Fig. 5-4 TEM images of the prepared Pd-Bi/C catalysts (A) C, (B) Pd/C, (C) Pd-Bi/C (1:0.03), (D) Pd-Bi/C (1:0.07), (E) Pd-Bi/C (1:0.14), (F) Pd-Bi/C (1:0.25), (G) Pd-Bi/C (1:0.5), and (H) Pd-Bi/C (1:1)……..…………………………………. 66 Fig. 5-5 The corresponding particle size distribution of Pd-Bi/C catalysts: (B) Pd/C, (C) Pd-Bi/C (1:0.03), (D) Pd-Bi/C (1:0.07), (E) Pd-Bi/C (1:0.14), (F) Pd-Bi/C (1:0.25), (G) Pd-Bi/C (1:0.5), and (H) Pd-Bi/C (1:1) ……………...……..............67 Fig. 5-6 XPS spectra of Bi/C and Pd-Bi/C in the Bi 4f region…………………………….69 Fig. 5-7 ECSA cyclic voltammograms of the backward scan of Pd-Bi/C catalysts …..71 Fig. 5-8 GOR cyclic voltammograms of the forward scan of Pd-Bi/C catalysts …..…..74 Fig. 5-9 The LSV curve plots of Pd-Bi/C catalysts at 1 mV s-1 .…………………………...75 Fig. 5-10 Tafel plots of Pd-Bi/C catalysts at region I ……………………...…………….….... 76 Fig. 5-11 Tafel plots of Pd-Bi/C catalysts at region II …………………………………....….. 76 Fig. 5-12 Current-time curves with the CA measurements of Pd-Bi/C catalysts………..79 Fig. 5-13 The changes of the poisoning rate and current density at 1000 s of Pd-Bi/C catalysts…………………………………………………………………………………….79 Fig. 5-14 GOR cycling stability study of Pd/C and Pd-Bi/C (1:0.14) catalysts …………80 Fig. 5-15 Cyclic voltammograms of Pd-Bi/C (1:0.14) at different temperature ………...81 Fig. 5-16 Concentration effect of Pd-Bi/C (1:0.14) at different glucose concentration in 0.5 mol L-1 NaOH solution …….…………………………………………………..…..83 Fig. 5-17 Concentration effect of Pd-Bi/C (1:0.14) at different NaOH concentration solution with 0.5 mol L-1 glucose ……………….……………………….….…….…. 83 Fig. 5-18 The schemes of bismuth-glucose complex on the surface of Pd-Bi/C ….……85 Fig. 6-1 Illustration of a two-stage polyol method for Pd-Ni/C catalysts.........................87 Fig. 6-2 Two-stage polyol synthesis of cMWCNT supported Pd-Ni catalysts…………88 Fig. 6-3 The XRD patterns of Pd-Ni/C catalysts: (a) Pd/C, (b) Pd-Ni/C (1:0.02), (c) Pd-Ni/C (1:0.03), (d) Pd-Ni/C (1:0.06), (e) Pd-Ni/C (1:0.14), (f) Pd-Ni/C (1:0.33), and (g) Ni/C ………………………………………………………………… 90 Fig. 6-4 The enlarged XRD patterns of (a) Pd/C and (b) Pd-Ni/C ………………………. 90 Fig. 6-5 TEM images of the Pd-Ni/C catalysts: (A) Pd/C, (B) Pd-Ni/C (1:0.02), (C) Pd-Ni/C (1:0.03), (D) Pd-Ni/C (1:0.06), (E) Pd-Ni/C (1:0.14), (F) Pd-Ni/C (1:0.33), and (G) Ni/C………………………………………………………………...92 Fig. 6-6 The corresponding particle size distribution: (A) Pd/C, (B) Pd-Ni/C (1:0.02), (C) Pd-Ni/C (1:0.03), (D) Pd-Ni/C (1:0.06), (E) Pd-Ni/C (1:0.14), and (F) Pd-Ni/C (1:0.33) ………………………………………………………………………… 93 Fig. 6-7 HR-TEM morphological characteristic of the Pd-Ni/C catalyst……………….95 Fig. 6-8 Line profile of the elemental composition of Pd-Ni/C and the insert is the corresponding HAADF-STEM image ……………………………………………… 95 Fig. 6-9 The SEM-EDX micrographs of Pd-Ni/C catalysts: (A) Pd/C, (B) Pd-Ni/C (1:0.02), (C) Pd-Ni/C (1:0.03), (D) Pd-Ni/C (1:0.06), (E) Pd-Ni/C (1:0.14), (F) Pd-Ni/C (1:0.33), and (G) Ni/C ………………………….…….…………....… 96 Fig. 6-10 ECSA cyclic voltammograms of the backward scan of Pd-Ni/C catalysts .... 97 Fig. 6-11 GOR cyclic voltammograms of the forward scan for Pd-Ni/C catalysts…….99 Fig. 6-12 The LSV curves of Pd-Ni/C catalysts at 1 mV s-1 ………………………………101 Fig. 6-13 Tafel plots of the Pd-Ni/C catalysts at region I …………………………………..101 Fig. 6-14 Tafel plots of the Pd-Ni/C catalysts at region II …………………………………102 Fig. 6-15 Current-time curves with CA measurements of the Pd-Ni/C catalysts ……..103 Fig. 6-16 The changes of the poisoning rate and current density at 1000 s of Pd-Ni/C catalysts ...………………………………………………………………………………..104 Fig. 6-17 GOR cycling stability study of Pd/C and Pd-Ni/C (1:0.06)…………………...104 Fig. 6-18 Concentration effect of Pd-Ni/C (1:0.06) at different glucose concentration in 0.5 mol L-1 NaOH solution …………………………………………………………..106 Fig. 6-19 Concentration effect of Pd-Ni/C (1:0.06) at different NaOH concentration solution with 0.5 mol L-1 glucose …………………………………………………..107 Fig. 6-20 GOR performance of Pd-Ni/C (1:0.06) at an optimal condition ……………..107 Fig. 6-21 Schematic of alkaline GOR on Pd-Ni/C with the electronic effect .................108 Fig. 7-1 GOR current densities of the prepared Pd-based catalysts…………………….110 Fig. 7-2 Illustration of cMWCNT supported Pd-Ni-Bi trimetallic catalyst…………...113 Fig. A-1 GOR performances comparison of different synthesis methods ……………..121 Fig. B-1 Current density versus cell voltage and the power density plot of Pd-Bi/C anode based batch DGFC .…………………………………...……………………….122 Fig. B-2 Schematic of a homemade fabricated DGFC MEA …………………………….123 Fig. B-3 Current density versus cell voltage and the power density plot of Pd-Bi/C anode based DGFC MEA …………………………………………………………….124 Fig. C-1 Current density versus cell voltage and the power density plot of Pd-Ni/C anode based batch DGFC ….…………………………………………….... 125 | |
| dc.language.iso | en | |
| dc.subject | 直接葡萄糖燃料電池 | zh_TW |
| dc.subject | 葡萄糖氧化反應 | zh_TW |
| dc.subject | 鈀基觸媒 | zh_TW |
| dc.subject | 雙金屬觸媒 | zh_TW |
| dc.subject | 多元醇法 | zh_TW |
| dc.subject | glucose oxidation reaction | en |
| dc.subject | direct glucose fuel cell | en |
| dc.subject | polyol method | en |
| dc.subject | bimetallic catalyst | en |
| dc.subject | palladium based catalyst | en |
| dc.title | 鈀基奈米觸媒應用於葡萄糖催化與燃料電池之應用 | zh_TW |
| dc.title | Study of Palladium-based Nanocatalysts for Glucose Electro-oxidation and Fuel Cell Application | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 何國川,陳力騏,廖英志,林正嵐 | |
| dc.subject.keyword | 葡萄糖氧化反應,鈀基觸媒,雙金屬觸媒,多元醇法,直接葡萄糖燃料電池, | zh_TW |
| dc.subject.keyword | glucose oxidation reaction,palladium based catalyst,bimetallic catalyst,polyol method,direct glucose fuel cell, | en |
| dc.relation.page | 126 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-06 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 11.63 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
