Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53555
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖淑貞
dc.contributor.authorPin-Yi Sheen
dc.contributor.author佘品怡zh_TW
dc.date.accessioned2021-06-16T02:25:40Z-
dc.date.available2017-09-25
dc.date.copyright2015-09-25
dc.date.issued2015
dc.date.submitted2015-08-06
dc.identifier.citation1. Rózalski A, S.Z., Kotełko K. , Potential virulence factors of Proteus bacilli. Microbiology and Molecular Biology Reviews., 1997. 1997;61(1):65-89.
2. Warren, J.W., et al., A prospective microbiologic study of bacteriuria in patients with chronic indwelling urethral catheters. J Infect Dis, 1982. 146(6): p. 719-23.
3. Hooton, T.M., et al., Diagnosis, prevention, and treatment of catheter-associated urinary tract infection in adults: 2009 International Clinical Practice Guidelines from the Infectious Diseases Society of America. Clin Infect Dis, 2010. 50(5): p. 625-63.
4. Jacobsen, S.M., et al., Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clin Microbiol Rev, 2008. 21(1): p. 26-59.
5. Armbruster, C.E. and H.L. Mobley, Merging mythology and morphology: the multifaceted lifestyle of Proteus mirabilis. Nat Rev Microbiol, 2012. 10(11): p. 743-54.
6. Mobley, H.L., et al., Construction of a flagellum-negative mutant of Proteus mirabilis: effect on internalization by human renal epithelial cells and virulence in a mouse model of ascending urinary tract infection. Infect Immun, 1996. 64(12): p. 5332-40.
7. Belas R, E.D., Flaherty D., Proteus mirabilis mutants defective in swarmer cell differentiation and multicellular behavior. J Bacteriol 1991. 173:6279-6288.
8. Allison C, E.L., Coleman N, Hughes C., The role of swarm cell differentiation and multicellular migration in the uropathogenicity of Proteus mirabilis. The Journal of infectious diseases 1994. 169:1155-1158.
9. Li, X., D.E. Johnson, and H.L. Mobley, Requirement of MrpH for mannose-resistant Proteus-like fimbria-mediated hemagglutination by Proteus mirabilis. Infect Immun, 1999. 67(6): p. 2822-33.
10. Bahrani, F.K., et al., Construction of an MR/P fimbrial mutant of Proteus mirabilis: role in virulence in a mouse model of ascending urinary tract infection. Infect Immun, 1994. 62(8): p. 3363-71.
11. Silverblatt, F.J. and I. Ofek, Influence of pili on the virulence of Proteus mirabilis in experimental hematogenous pyelonephritis. J Infect Dis, 1978. 138(5): p. 664-7.
12. Flemming, H.C. and J. Wingender, The biofilm matrix. Nat Rev Microbiol, 2010. 8(9): p. 623-33.
13. McDougald, D., et al., Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat Rev Microbiol, 2012. 10(1): p. 39-50.
14. Rozalski, A., Z. Sidorczyk, and K. Kotelko, Potential virulence factors of Proteus bacilli. Microbiol Mol Biol Rev, 1997. 61(1): p. 65-89.
15. Senior, B.W., L.M. Loomes, and M.A. Kerr, The production and activity in vivo of Proteus mirabilis IgA protease in infections of the urinary tract. J Med Microbiol, 1991. 35(4): p. 203-7.
16. Allison, C. and C. Hughes, Bacterial swarming: an example of prokaryotic differentiation and multicellular behaviour. Sci Prog, 1991. 75(298 Pt 3-4): p. 403-22.
17. Coker, C., et al., Pathogenesis of Proteus mirabilis urinary tract infection. Microbes Infect, 2000. 2(12): p. 1497-505.
18. Rauprich, O., et al., Periodic phenomena in Proteus mirabilis swarm colony development. J Bacteriol, 1996. 178(22): p. 6525-38.
19. Allison, C., et al., The role of swarm cell differentiation and multicellular migration in the uropathogenicity of Proteus mirabilis. J Infect Dis, 1994. 169(5): p. 1155-8.
20. Stickler, D., et al., Studies on the formation of crystalline bacterial biofilms on urethral catheters. Eur J Clin Microbiol Infect Dis, 1998. 17(9): p. 649-52.
21. Walker, K.E., et al., ZapA, the IgA-degrading metalloprotease of Proteus mirabilis, is a virulence factor expressed specifically in swarmer cells. Mol Microbiol, 1999. 32(4): p. 825-36.
22. Allison, C., et al., Ability of Proteus mirabilis to invade human urothelial cells is coupled to motility and swarming differentiation. Infect Immun, 1992. 60(11): p. 4740-6.
23. Givskov, M., et al., Two separate regulatory systems participate in control of swarming motility of Serratia liquefaciens MG1. J Bacteriol, 1998. 180(3): p. 742-5.
24. Akerley, B.J., P.A. Cotter, and J.F. Miller, Ectopic expression of the flagellar regulon alters development of the Bordetella-host interaction. Cell, 1995. 80(4): p. 611-20.
25. Pearson, M.M. and H.L. Mobley, Repression of motility during fimbrial expression: identification of 14 mrpJ gene paralogues in Proteus mirabilis. Mol Microbiol, 2008. 69(2): p. 548-58.
26. Hay, N.A., et al., A novel membrane protein influencing cell shape and multicellular swarming of Proteus mirabilis. J Bacteriol, 1999. 181(7): p. 2008-16.
27. Belas, R., Expression of multiple flagellin-encoding genes of Proteus mirabilis. J Bacteriol, 1994. 176(23): p. 7169-81.
28. Verstraeten, N., et al., Living on a surface: swarming and biofilm formation. Trends Microbiol, 2008. 16(10): p. 496-506.
29. Belas, R., M. Goldman, and K. Ashliman, Genetic analysis of Proteus mirabilis mutants defective in swarmer cell elongation. J Bacteriol, 1995. 177(3): p. 823-8.
30. Allison, C., H.C. Lai, and C. Hughes, Co-ordinate expression of virulence genes during swarm-cell differentiation and population migration of Proteus mirabilis. Mol Microbiol, 1992. 6(12): p. 1583-91.
31. Fraser, G.M., et al., Swarming-coupled expression of the Proteus mirabilis hpmBA haemolysin operon. Microbiology, 2002. 148(Pt 7): p. 2191-201.
32. Hay, N.A., et al., A nonswarming mutant of Proteus mirabilis lacks the Lrp global transcriptional regulator. J Bacteriol, 1997. 179(15): p. 4741-6.
33. O'Hara, C.M., F.W. Brenner, and J.M. Miller, Classification, identification, and clinical significance of Proteus, Providencia, and Morganella. Clin Microbiol Rev, 2000. 13(4): p. 534-46.
34. Bonnet, R., et al., Diversity of TEM mutants in Proteus mirabilis. Antimicrob Agents Chemother, 1999. 43(11): p. 2671-7.
35. Nielubowicz, G.R., S.N. Smith, and H.L. Mobley, Outer membrane antigens of the uropathogen Proteus mirabilis recognized by the humoral response during experimental murine urinary tract infection. Infect Immun, 2008. 76(9): p. 4222-31.
36. Ragnarsdottir, B., et al., Genetics of innate immunity and UTI susceptibility. Nat Rev Urol, 2011. 8(8): p. 449-68.
37. Weichhart, T., et al., Current concepts of molecular defence mechanisms operative during urinary tract infection. Eur J Clin Invest, 2008. 38 Suppl 2: p. 29-38.
38. Drake, R., Genetics: TLR4 promoter variants influence response to UTI. Nat Rev Urol, 2010. 7(7): p. 365.
39. Pearson, M.M., et al., Transcriptome of Proteus mirabilis in the murine urinary tract: virulence and nitrogen assimilation gene expression. Infect Immun, 2011. 79(7): p. 2619-31.
40. Reading, N.C., et al., A novel two-component signaling system that activates transcription of an enterohemorrhagic Escherichia coli effector involved in remodeling of host actin. J Bacteriol, 2007. 189(6): p. 2468-76.
41. Njoroge, J. and V. Sperandio, Enterohemorrhagic Escherichia coli virulence regulation by two bacterial adrenergic kinases, QseC and QseE. Infect Immun, 2012. 80(2): p. 688-703.
42. Hughes, D.T. and V. Sperandio, Inter-kingdom signalling: communication between bacteria and their hosts. Nat Rev Microbiol, 2008. 6(2): p. 111-20.
43. Reading, N.C., et al., The two-component system QseEF and the membrane protein QseG link adrenergic and stress sensing to bacterial pathogenesis. Proc Natl Acad Sci U S A, 2009. 106(14): p. 5889-94.
44. Rasko, D.A., et al., Targeting QseC signaling and virulence for antibiotic development. Science, 2008. 321(5892): p. 1078-80.
45. Okada, A., et al., Targeting two-component signal transduction: a novel drug discovery system. Methods Enzymol, 2007. 422: p. 386-95.
46. Franze de Fernandez MT, E.L., August JT., Factor fraction required for the synthesis of bacteriophage Qbeta-RNA. . Nature., 1968. 219: 219: 588 -590.
47. Kulesus RR, D.-P.K., Slechta ES, Eto DS, Mulvey MA, Impact of the RNA chaperone Hfq on the fitness and virulence potential of uropathogenic Escherichia coli. . Infection and immunity, 2008. 76: 3019-3026.
48. H., A., Mechanism of RNA silencing by Hfq-binding small RNAs. . Current opinion in microbiology, 2007. 10: 134-139.
49. Chao Y, V.J., The role of Hfq in bacterial pathogens. Current opinion in microbiology 13: 24 -33., 2010. 13: 24 -33.
.
50. Wang MC, C.H., Tsai YL, Liu Liaw SJ., The RNA chaperone Hfq is involved in stress tolerance and virulence uropathogenic Proteus mirabilis. . PloS one, 2014. 9: e85626.
51. Mika F, H.R., Small RNAs in the control of RpoS, CsgD, and biofilm architecture of Escherichia coli. . RNA biology, 2014. 11.
52. Li L, H.D., Cheung MK, Nong W, Q, Kwan HS., BSRD: a repository for bacterial small regulatory RNA. . Nucleic acids research 41: D233-238.
53. Gorke B, V.J., Noncoding RNA control of the making and breaking of sugars. Genes & development, 2008. 22:2914-2925.
54. Urban JH, V.J., Two seemingly homologous noncoding RNAs act hierarchically to activate glmS mRNA translation. PLos biology, 2008. 6:e64.
55. Urban JH, P.K., Thomsen J, Schmitz RA, Vogel J., A conserved small RNA promotes discoordinate expression of the glmUS operon mRNA to activate GlmS synthesis. Journal of molecular biology, 2007. 373:521-528.
56. Reichenbach B, M.A., Kalamorz F, Hajnsdorf E, Gorke B., The small RNA GlmY acts upstream of sRNA GlmZ in activation of glmS expression and is subject to regulation by polyadenylation in Escherichia coli. Nucleic acids research, 2008. 36:2570-2580.
57. Kalamorz F, R.B., Marz W, RakB, Gorke B., Feedback control of glucosamine-6-phosphate synthase GlmS expression depends on the small RNA GlmZ and involves the novel protein YhbJ in Escherichia coli. Molecular microbiology, 2007. 65:1518-1533.
58. Nicolle, L.E., Catheter-related urinary tract infection. Drugs Aging, 2005. 22(8): p. 627-39.
59. Pearson MM, R.D., Smith SN, Mobley HL., Transcriptome of swarming Proteus mirabilis. Infection and immunity, 2010. 78:2834-2845.
60. Clarke, M.B., et al., The QseC sensor kinase: a bacterial adrenergic receptor. Proc Natl Acad Sci U S A, 2006. 103(27): p. 10420-5.
61. Sperandio, V., et al., Bacteria-host communication: the language of hormones. Proc Natl Acad Sci U S A, 2003. 100(15): p. 8951-6.
62. Yvonne Gopel, K.P., Birte Reichenbach, Jorg Vogel, and Boris Gorke., Targeted decay of a regulatory small RNA by an adaptor protein for RNase E and counteraction by an anti-adaptor RNA. GENES & DEVELOPMENT, 2013. 27:552-564.
63. de Lorenzo V, H.M., Jakubzik U, Timmis KN., Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J Bacteriol 1990. 172:6568-6572.
64. Hong H, J.J., Park W Plasmid-encoded tetracycline efflux pump protein alters bacterial stress responses and ecological fitness of Acinetobacter oleivorans. PLoS One 2014. 9: e107716.
65. Kascsak, R.J., et al., Mouse polyclonal and monoclonal antibody to scrapie-associated fibril proteins. J Virol, 1987. 61(12): p. 3688-93.
66. Li, X., et al., Identification of MrpI as the sole recombinase that regulates the phase variation of MR/P fimbria, a bladder colonization factor of uropathogenic Proteus mirabilis. Mol Microbiol, 2002. 45(3): p. 865-74.
67. Peerbooms PG, V.A., MacLaren DM, Vero cell invasiveness of Proteus mirabilis. Infect Immun., 1984. 43: p. 1068-71.
68. Schweizer, H.P. and T.T. Hoang, An improved system for gene replacement and xylE fusion analysis in Pseudomonas aeruginosa. Gene, 1995. 158(1): p. 15-22.
69. Jiang, S.S., et al., Characterization of UDP-glucose dehydrogenase and UDP-glucose pyrophosphorylase mutants of Proteus mirabilis: defectiveness in polymyxin B resistance, swarming, and virulence. Antimicrob Agents Chemother, 2010. 54(5): p. 2000-9.
70. A. E. Budding, C.J.I., W. Bitter, C. M. Vandenbroucke-Grauls, and P. M. Schneeberger, The Dienes Phenomenon: Competition and Territoriality in Swarming Proteus mirabilis. J. Bacteriol., 2009. June 2009 vol. (191 no. 12 3892-3900).
71. Lima DB, T.A., Mello CP, de Menezes RR, Sampaio TL, Antimicrobial effect of Dinoponera quadriceps (Hymenoptera: Formicidae) venom against Staphylococcus aureus strains. J Appl Microbiol, 2014. 117: 390-396.
72. Dufour A, F.R., Hughes C., Novel genes that upregulate the proteus mirabilis flhDC master operon controlling flagellar biogenesis and swarming. Molecular microbiology, 1992. 29: 741-751.
73. Clemmer, K.M. and P.N. Rather, Regulation of flhDC expression in Proteus mirabilis. Res Microbiol, 2007. 158(3): p. 295-302.
74. Burkart, M., A. Toguchi, and R.M. Harshey, The chemotaxis system, but not chemotaxis, is essential for swarming motility in Escherichia coli. Proc Natl Acad Sci U S A, 1998. 95(5): p. 2568-73.
75. Reichenbach B, G.A., Gorke B., Dual control by perfectly overlapping sigma 54- and sigma 70- promoters adjusts small RNA GlmY expression to different environmental signals. Mol Microbiol, 2009. 74: 1045-1070.
76. Göpel Y, L.D., Heroven AK, Reichenbach B, Dersch P, Görke B., Common and divergent features in transcriptional control of the homologous small RNAs GlmY and GlmZ in Enterobacteriaceae. Nucleic Acids Res., 2011. Mar;39(4):1294-309. .
77. Charley C. Gruber, V.S., Posttranscriptional Control of Microbe-Induced Rearrangement of Host Cell Actin. mBio., 2014. Jan-Feb; 5(1): e01025-13.
78. Hobbs EC, A.J., Storz G Small RNAs and small proteins involved in resistance to cell envelope stress and acid shock in Escherichia coli: analysis of a bar-coded mutant collection. J Bacteriol, 2010. 192 (1): 59–67.
79. Göpel Y, P.K., Reichenbach B, Vogel J, Görke B., Targeted decay of a regulatory small RNA by an adaptor protein for RNase E and counteraction by an anti-adaptor RNA. Genes Dev., 2013. Mar 1;27(5):552-64. doi: 10.1101/gad.210112.112.
80. Göpel Y, K.M., Görke B., Ménage à trois: post-transcriptional control of the key enzyme for cell envelope synthesis by a base-pairing small RNA, an RNase adaptor protein, and a small RNA mimic. RNA Biol. , 2014. 11(5):433-42.
81. Burall LS, H.J., Li X, Lockatell CV, Himpsl SD, Hebel JR, Johnson DE, Mobley HL, Proteus mirabilis genes that contribute to pathogenesis of urinary tract infection: identification of 25 signature-tagged mutants attenuated at least 100-fold. Infect Immun., 2004. May;72(5):2922-38.
82. PN, R., Swarmer cell differentiation in Proteus mirabilis. Environ Microbiol., 2005. Aug;7(8):1065-73.
83. Gunning PW, G.U., Whitaker S, Popp D, Robinson RC The evolution of compositionally and functionally distinct actin filaments. J Cell Sci., 2015. 128, 2009-2019.
84. Jacobs-Wagner, M.T.C.a.C., BACTERIAL CELL SHAPE. Nature Reviews Microbiology, 2005. 3, 601-610.
85. Cayrol B, F.E., Martret C, Cech G, Kloska A, Caulet S, Barbet M, Trépout S, Marco S, Taghbalout A, Busi F, Wegrzyn G, Arluison V., Riboregulation of the bacterial actin-homolog MreB by DsrA small noncoding RNA. Integr Biol (Camb). , 2015. 7(1):128-41.
86. Howery KE, C.K., Şimşek E, Kim M, Rather PN, Regulation of the Min Cell Division Inhibition Complex by the Rcs Phosphorelay in Proteus mirabilis. J Bacteriol., 2015. Aug 1;197(15).
87. Liu MC, K.K., Chien HF, Tsai YL, Liaw SJ, New aspects of RpoE in uropathogenic Proteus mirabilis. Infect Immun., 2015. Mar;83(3):966-77. .
88. Rowley, G., et al., Pushing the envelope: extracytoplasmic stress responses in bacterial pathogens. Nat Rev Microbiol, 2006. 4(5): p. 383-94.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53555-
dc.description.abstract奇異變形桿菌(Proteus mirabilis)是革蘭氏陰性的兼性厭氧的桿菌,屬腸內菌科 (Enterobacteriaceae) 為健康人類腸道中的正常菌叢,在部分插尿導管的病患身上會造成伺機性感染,是尿道感染的重要病原菌,也會導致膀胱炎、腎結石,腎臟病等併發症。其中P. mirabilis的表面移行現象對該菌在宿主體內生存是非常重要的,可使細菌能於黏膜等固體表面移動,有利於入侵宿主細胞;協助細菌上行至泌尿道而引發感染,也與插尿管病人導尿管中的生物膜形成有關。在E. coli和某些腸內菌中發現small RNAs GlmY 和 GlmZ 會調控glmS (glucosamine-6-phosphate )的表現,影響合成細胞壁。另外GlmY 及 GlmZ會受到QseF及QseB調控,幫助細菌貼附並入侵腸道上皮細胞。本實驗室已建立qseEGF和qseF突變株,其表現型與運動性相關。近期研究發現E. coli和P. mirabilis的 glmY皆在qseEGF基因上游,因此本篇論文探討GlmY在P. mirabilis中所扮演的角色。我們建構glmY突變株(glmY knockout),探討GlmY在P. mirabilis中所扮演的角色。我們比較∆qseF和野生株中GlmY表現量,證實 GlmY的確受到QseF的調控;並排除∆glmY影響qseEGF的可能性。觀察GlmY對於P. mirabilis的影響,發現∆glmY不會影響生長、抗藥性、通透性和生物膜的形成;而表面移行、泳動能力下降、鞭毛較少、細胞型態較短小和swarmer cell分化下降;利用pBAD33 plasmid 在野生株中過度表現GlmY,可發現表面移行、細胞長度與鞭毛都顯著的上升;而GlmY-complemented strain皆有補回。在基因調控方面,以生物資訊預測GlmY調控基因,發現與趨化因子相關的cheA。∆glmY中flhDC、cheA mRNA的表現量較野生株少;而rcsB mRNA則是上升。顯示GlmY可能間接影響flhDC與rcsB,直接調控cheA造成鞭毛合成、swarmer cell分化與運動性下降。目前我們正在進行找出GlmY在P. mirabilis中與cheA 的結合區域與探討GlmY與GlmZ之間的作用機制。目前GlmY尚未發現有相關功能;在P. mirabilis中,GlmY受到QseF的調控,進而影響cheA造成運動性相關的表現型。zh_TW
dc.description.abstractProteus mirabilis is a facultative anaerobic, Gram-negative bacterium and a member of the Enterobacteriaceae family. It is part of the normal flora of the human gastrointestinal tract, but an opportunistic pathogen that frequently causes complicated urinary tract infections in patients under long-term catheterization. P. mirabilis infections frequently develop into cystitis and pyelonephritis and can be further complicated by catheter encrustation and formation of urinary stones. The ability of P. mirabilis to invade host urothelial cells is closely coupled to swarming, a form of cyclical multicellular behavior in which vegetative bacteria differentiate into hyper flagellated. The flagellum of P. mirabilis is crucial to its motility, a characteristic that helps the organisms colonize. The flagellum has also been linked to the ability of P. mirabilis to form biofilms, aiding in the bacteria’s resistance to defenses of the host and select antibiotics. P. mirabilis also relies on its pili for adhesion to avoid being flushed out of the urinary tract system. The small RNAs (sRNAs) GlmY is present in Escherichia coli, Shigella flexneri, Yersinia pestis and Salmonella species, where it is found between the yfhk (qseE) and purL genes. The GlmY sRNA has been shown to activate the synthesis of glmS (glucosamine-6-phosphate, GlcN6P), which catalyses the rate limiting reaction in the biosynthesis of bacterial cell walls. GlmY's functions as an anti-adaptor, it binds to RapZ (RNase adaptor protein for sRNA GlmZ), this binding prevents RapZ from binding to GlmZ and targeting it for cleavage by RNase E. In enterohemorrhagic E. coli (EHEC) GlrR/GlrK (QseF/QseE) coordinately activate transcription of GlmY and GlmZ that post-transcriptionally further modulate and coordinate expression of the LEE and espFU, which is an EHEC-specific gene and encodes an effector protein translocated to the host cell. Our lab has qseEGF and qseF mutant, which relate to the ability of swarming in P. mirabilis. The sRNA between the qseE and purL genes in P. mirabilis has recently been identified as GlmY. Thus, we investigate the role of P. mirabilis sRNA GlmY in this study. We constructed glmY mutant by used homologous recombinant with kmr cassette and found the glmY mutant had reduced motility, fewer flagella and swarmer cell differentiation relative to wild-type and the GlmY-complemented strain. Then we ruled out the glmY deletion affect transcription of qseEGF by RT-PCR, to confirm that phenotypes are caused by glmY mutation. We also confirmed that transcription of GlmY and GlmZ is controlled by the two-component system QseF/QseE in P. mirabilis by glmY reporter assay and real-time PCR. We used bioinformatic tools to predict sRNA GlmY target, and found out the chemotaxis protein A (CheA) which had GlmY binding site and related to flagellar assembly. The real-time PCR data indicates GlmY likely modulates flhDC, rcsB and cheA mRNAs expression level and affects the production of flagellin, the subunit of flagella, and swarming differentiation in P. mirabilis. Alltogether, our data indicate that GlmY is important in P. mirabilis motility by modulating genes associated with swarming. This is the first report about the role of P. mirabilis GlmY.en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:25:40Z (GMT). No. of bitstreams: 1
ntu-104-R02424027-1.pdf: 5833557 bytes, checksum: 8ca91010bc9ea483a9436125e9f6b80b (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
第一節 奇異變形桿菌(Proteus mirabilis)介紹 1
第二節 QseEGF、Hfq與GlmY sRNA的基本介紹的基本介紹 8
第三節 研究動機與目的 11
第四節 實驗設計 12
第二章 實驗材料與方法 13
第一節 實驗材料 13
第二節 glmY knockout方法 16
第三節 分析突變株表現型(phenotype)及毒力因子(virulence factor) 表現 31
第四節 GlmY參與之基因調控 46
第三章 實驗結果 54
第一節 利用knockout建立P. mirabilis glmY突變株 54
第二節 qseEGF operon之分析 55
第三節 glmY突變株表現型之分析 57
第四節 glmY突變株毒力因子之分析 61
第五節 分析GlmY 可能調控的路徑 62
第四章 結論與討論 66
第一節 結論 66
第二節 討論 67
第三節 未來展望 72
第五章 表 73
第六章 圖 76
第七章 附錄 100
REFERENCE 112
dc.language.isozh-TW
dc.subject表面移行zh_TW
dc.subject小RNAzh_TW
dc.subject奇異變形桿菌zh_TW
dc.subjectGlmYzh_TW
dc.subjectProteus mirabilisen
dc.subjectswarmingen
dc.subjectsmall RNAen
dc.subjectGlmYen
dc.title探討small RNA GlmY在奇異變形桿菌中所扮演的角色zh_TW
dc.titleThe roles of small RNA GlmY in Proteus mirabilisen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄧麗珍,楊翠青
dc.subject.keyword小RNA,奇異變形桿菌,GlmY,表面移行,zh_TW
dc.subject.keywordsmall RNA,GlmY,Proteus mirabilis,swarming,en
dc.relation.page118
dc.rights.note有償授權
dc.date.accepted2015-08-06
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
5.7 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved