Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53551
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃筱鈞(Hsiao-Chun Huang)
dc.contributor.authorPo-Jiun Yangen
dc.contributor.author楊博竣zh_TW
dc.date.accessioned2021-06-16T02:25:38Z-
dc.date.available2020-08-21
dc.date.copyright2020-08-21
dc.date.issued2020
dc.date.submitted2020-08-05
dc.identifier.citationAndrianantoandro, E., S. Basu, D. K. Karig R. Weiss (2006) Synthetic biology: new engineering rules for an emerging discipline. Molecular systems biology, 2, 2006.0028.
Bowman, G. R., L. R. Comolli, G. M. Gaietta, M. Fero, S. H. Hong, Y. Jones, J. H. Lee, K. H. Downing, M. H. Ellisman H. H. McAdams (2010) Caulobacter PopZ forms a polar subdomain dictating sequential changes in pole composition and function. Molecular microbiology, 76, 173-189.
Bowman, G. R., A. M. Perez, J. L. Ptacin, E. Ighodaro, E. Folta‐Stogniew, L. R. Comolli L. Shapiro (2013) Oligomerization and higher‐order assembly contribute to sub‐cellular localization of a bacterial scaffold. Molecular microbiology, 90, 776-795.
Brenner, K., L. You F. H. Arnold (2008) Engineering microbial consortia: a new frontier in synthetic biology. Trends in biotechnology, 26, 483-489.
Cameron, D. E., C. J. Bashor J. J. Collins (2014) A brief history of synthetic biology. Nature Reviews Microbiology, 12, 381-390.
Cha, J.-H. G. C. Stewart (1997) The divIVA minicell locus of Bacillus subtilis. Journal of bacteriology, 179, 1671-1683.
Chen, Z., H. Yang N. P. Pavletich (2008) Mechanism of homologous recombination from the RecA–ssDNA/dsDNA structures. Nature, 453, 489-494.
Cheng, A. A. T. K. Lu (2012) Synthetic biology: an emerging engineering discipline. Annual review of biomedical engineering, 14, 155-178.
Christen, M., H. D. Kulasekara, B. Christen, B. R. Kulasekara, L. R. Hoffman S. I. Miller (2010) Asymmetrical distribution of the second messenger c-di-GMP upon bacterial cell division. Science, 328, 1295-1297.
Ebersbach, G., A. Briegel, G. J. Jensen C. Jacobs-Wagner (2008) A self-associating protein critical for chromosome attachment, division, and polar organization in caulobacter. Cell, 134, 956-968.
Edwards, D. H. J. Errington (1997) The Bacillus subtilis DivIVA protein targets to the division septum and controls the site specificity of cell division. Molecular microbiology, 24, 905-915.
Elowitz, M. W. A. Lim (2010) Build life to understand it. Nature, 468, 889-890.
Elowitz, M. B. S. Leibler (2000) A synthetic oscillatory network of transcriptional regulators. Nature, 403, 335-338.
Ely, B. R. C. Johnson (1977) Generalized transduction in Caulobacter crescentus. Genetics, 87, 391-399.
Evinger, M. N. Agabian (1977) Envelope-associated nucleoid from Caulobacter crescentus stalked and swarmer cells. Journal of bacteriology, 132, 294-301.
Fan, H., F. Xie, Y. Li, Z. Jiang J. Liu (2017) Automatic segmentation of dermoscopy images using saliency combined with Otsu threshold. Computers in biology and medicine, 85, 75-85.
Gardner, T. S., C. R. Cantor J. J. Collins (2000) Construction of a genetic toggle switch in Escherichia coli. Nature, 403, 339-342.
Gilles Malherbe, D. P. Humphreys E. Davé (2019) A robust fractionation method for protein subcellular localization studies in Escherichia coli. BIOTECHNIQUESVOL, 66.
Gottesman, S., E. Roche, Y. Zhou R. T. Sauer (1998) The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes development, 12, 1338-1347.
Hall, B. G. M. Barlow (2005) Revised Ambler classification of β-lactamases. Journal of Antimicrobial Chemotherapy, 55, 1050-1051.
Heinemann, M. S. Panke (2006) Synthetic biology—putting engineering into biology. Bioinformatics, 22, 2790-2799.
Holmes, J. A., S. E. Follett, H. Wang, C. P. Meadows, K. Varga G. R. Bowman (2016) Caulobacter PopZ forms an intrinsically disordered hub in organizing bacterial cell poles. Proceedings of the National Academy of Sciences, 113, 12490-12495.
Jacoby, G. A. (2009) AmpC beta-lactamases. Clin Microbiol Rev, 22, 161-82, Table of Contents.
Jan, Y. N. L. Y. Jan (1998) Asymmetric cell division. Nature, 392, 775-778.
Joshi, K. K., C. M. Battle P. Chien (2018) Polar localization hub protein PopZ restrains adaptor-dependent ClpXP proteolysis in Caulobacter crescentus. Journal of bacteriology, 200, e00221-18.
Kapust, R. B., J. Tözsér, J. D. Fox, D. E. Anderson, S. Cherry, T. D. Copeland D. S. Waugh (2001) Tobacco etch virus protease: mechanism of autolysis and rational design of stable mutants with wild-type catalytic proficiency. Protein engineering, 14, 993-1000.
Knirel, Y. A., N. A. Paramonov, A. S. Shashkov, N. K. Kochetkov, R. G. Yarullin, S. M. Farber V. I. Efremenko (1992) Structure of the polysaccharide chains of Pseudomonas pseudomallei lipopolysaccharides. Carbohydrate research, 233, 185-193.
Knoblich, J. A. (2001) Asymmetric cell division during animal development. Nature reviews Molecular cell biology, 2, 11-20.
Laloux, G. C. Jacobs-Wagner (2013) Spatiotemporal control of PopZ localization through cell cycle–coupled multimerization. Journal of Cell Biology, 201, 827-841.
Laub, M. T., L. Shapiro H. H. McAdams (2007) Systems biology of Caulobacter. Annu Rev Genet, 41, 429-41.
Lenarcic, R., S. Halbedel, L. Visser, M. Shaw, L. J. Wu, J. Errington, D. Marenduzzo L. W. Hamoen (2009) Localisation of DivIVA by targeting to negatively curved membranes. The EMBO journal, 28, 2272-2282.
McGinness, K. E., T. A. Baker R. T. Sauer (2006) Engineering controllable protein degradation. Molecular cell, 22, 701-707.
Nierman, W. C., T. V. Feldblyum, M. T. Laub, I. T. Paulsen, K. E. Nelson, J. Eisen, J. F. Heidelberg, M. Alley, N. Ohta J. R. Maddock (2001) Complete genome sequence of Caulobacter crescentus. Proceedings of the National Academy of Sciences, 98, 4136-4141.
Paintdakhi, A., B. Parry, M. Campos, I. Irnov, J. Elf, I. Surovtsev C. Jacobs‐Wagner (2016) Oufti: an integrated software package for high‐accuracy, high‐throughput quantitative microscopy analysis. Molecular microbiology, 99, 767-777.
Perez, A. M., T. H. Mann, K. Lasker, D. G. Ahrens, M. R. Eckart L. Shapiro (2017) A localized complex of two protein oligomers controls the orientation of cell polarity. MBio, 8.
Pu, J., J. Zinkus-Boltz B. C. Dickinson (2017) Evolution of a split RNA polymerase as a versatile biosensor platform. Nature chemical biology, 13, 432-438.
Quan, J. J. Tian (2009) Circular polymerase extension cloning of complex gene libraries and pathways. PloS one, 4, e6441.
Quan, J. J. Tian (2011) Circular polymerase extension cloning for high-throughput cloning of complex and combinatorial DNA libraries. Nature protocols, 6, 242-251.
Radhakrishnan, S. K., M. Thanbichler P. H. Viollier (2008) The dynamic interplay between a cell fate determinant and a lysozyme homolog drives the asymmetric division cycle of Caulobacter crescentus. Genes development, 22, 212-225.
Roegiers, F. Y. N. Jan (2004) Asymmetric cell division. Current opinion in cell biology, 16, 195-205.
Shetty, R. P., D. Endy T. F. Knight (2008) Engineering BioBrick vectors from BioBrick parts. Journal of biological engineering, 2, 5.
Skinner, S. O., L. A. Sepúlveda, H. Xu I. Golding (2013) Measuring mRNA copy number in individual Escherichia coli cells using single-molecule fluorescent in situ hybridization. Nature protocols, 8, 1100-1113.
Sundararajan, K. E. D. Goley. 2017. Cytoskeletal proteins in Caulobacter crescentus: spatial orchestrators of cell cycle progression, development, and cell shape. In Prokaryotic Cytoskeletons, 103-137. Springer.
Xu, X., S. Xu, L. Jin E. Song (2011) Characteristic analysis of Otsu threshold and its applications. Pattern recognition letters, 32, 956-961.
Yan, Q. S. S. Fong (2017) Study of in vitro transcriptional binding effects and noise using constitutive promoters combined with UP element sequences in Escherichia coli. Journal of biological engineering, 11, 33.
Young, J. W., J. C. Locke, A. Altinok, N. Rosenfeld, T. Bacarian, P. S. Swain, E. Mjolsness M. B. Elowitz (2012) Measuring single-cell gene expression dynamics in bacteria using fluorescence time-lapse microscopy. Nature protocols, 7, 80.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53551-
dc.description.abstract細胞的分裂與分化不論是在原核生物或是真核生物中都是非常基礎的一個過程。細胞分裂的不對稱性往往是影響子細胞命運和多樣性非常重要的因素。我們利用合成生物學通過人造生物零件重新建構仿生系統的方法來重現細胞中不對稱性的現象。在被作為探討細胞不對稱分裂的模式生物新月柄桿菌中,我們了解到蛋白的局部極化性是影響細胞命運不對稱性的決定因素。為了探討細胞不對稱性分裂的機制以及建構最小基因組來實現細胞不對稱性分裂,我們設計包含了新月柄桿菌蛋白的基因線路,並使用被認定為是對稱性分裂的大腸桿菌作為表現的平台。我們在大腸桿菌中表現極區聚集蛋白(popZ)來做為在大腸桿菌細胞端點穩定聚集的支架蛋白。透過popZ和被其吸引的轉接子蛋白(SpmXΔC)的交互作用以及切半T7噬菌體RNA聚合酶的重新活化的現象,我們使蛋白質從popZ端點開始轉譯,創造了細胞內的蛋白濃度梯度且建立了popZ/SpmXΔC的系統平台。接著透過一個具有正交向的聚合蛋白(DivIVA)以及抗生素抗性基因(AmpC),我們限制了轉譯出來蛋白的擴散速率,並在細胞分裂之後,提供抗藥性給繼承了popZ蛋白的子細胞。根據報導蛋白(reporter protein)的螢光強度與分布位置,我們發現到蛋白質的極性和不對稱性確實發生在大腸桿菌中。在氨苄青黴素(ampicillin)抗生素的作用之下,子細胞出現了死亡時間的延後與不一致。通過popZ / SpmXΔC系統的平台,我們成功地實現了蛋白質細胞內的不對稱性和細胞分裂後的功能性分化。另一方面,我們希望通過另一種方法,利用煙草蝕刻病毒蛋白酶(Tobacco etch virus protease)的特性來實現在大腸桿菌中蛋白質細胞內不對稱。
zh_TW
dc.description.abstractCell division and differentiation are among the most fundamental processes in prokaryotic and eukaryotic cells. Asymmetric cell division is the important process that leads to alternative cell fates and cellular diversity. We applied the strategy of synthetic biology, which is used to create biomimetic systems through artificial biological and chemical building blocks, to bottom-up reconstitute asymmetric phenotypes. In Caulobacter crescentus, a model organism of asymmetric division and cell differentiation, we have learned that polar localization of protein is responsible for the asymmetric segregation of cell fate determinants. To investigate the mechanism of asymmetric cell division and establish the minimal machineries to achieve that, we designed the genetic circuit containing proteins from Caulobacter crescentus, and used the model organism Escherichia coli, which the division process is well-known to be symmetric, as the platform. We expressed a polarity polar organizing protein Z (popZ) as a robust and stable scaffold protein localized in one of E. coli cell poles. Via the polar recruitment of adaptor protein, SpmXΔC, and the polar reconstitution of split T7 bacteria phage RNA polymerase, we asymmetrically expressed proteins from the pole of popZ as our primary platform of popZ/SpmXΔC system. With an orthogonal oligomerization protein, DivIVA, and an antibiotic resistance gene, AmpC, we restricted the diffusion of the translated protein and equipped one of daughter cells that inherited popZ with antibiotic resistance upon cell division. According to the distribution and intensity of fluorescent reporter protein, we concluded that we successfully observed the occurrence of intracellular asymmetry in E. coli. After ampicillin treatment, we also observed a difference in death time between sister cells. In sum, we have successfully achieved intracellular asymmetry and functional differentiation at the first cell division with the platform of popZ/SpmXΔC. In addition, we also explored the possibility of applying the cleaving characteristic of Tobacco etch virus protease (TEV protease) as another strategy to achieve intracellular asymmetry in E. coli.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:25:38Z (GMT). No. of bitstreams: 1
U0001-0508202000092500.pdf: 5711964 bytes, checksum: 10cb0cc3f61119e003085e7a57d8f57a (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents致謝 i
摘要 iii
Abstract iv
Contents vi
Figure List viii
Table List x
Chapter 1. Introduction 1
1.1 Synthetic biology 1
1.2 Asymmetric cell division 2
1.3 Caulobacter crescentus 3
1.4 Polar organizing protein Z 4
1.5 DivIVA protein 5
1.6 Degradation tag 6
1.7 AmpC 7
1.8 TEV Protease 8
1.9 Tobacco etch virus (TEV) is a plant pathogenic virus 8
Chapter 2 Material and methods 9
2.1 Bacteria strain 9
2.2 Bacteria plasmid DNA extraction 10
2.3 Extract DNA fragment from TAE gel 11
2.4 Clean up PCR product 12
2.5 Polymerase chain reaction (PCR) 13
2.6 Culture media 14
2.7 Concentration of the antibiotic usage 15
2.8 Plasmid transformation 15
2.9 DNA Ligation 16
2.10 Plasmid DNA digested by restriction enzyme 17
2.11 BioBrick Assembly 18
2.12 Circular Polymerase Extension Cloning (CPEC) 19
2.13 Separate digested DNA fragment by electrophoresis 19
2.14 Periplasmic extraction and western blotting analysis 20
2.15 Optical density measurements 21
2.16 Microscopy 22
2.17 The method of statistical analysis 22
Chapter 3 Results and Discussion 25
3.1 Construct stability popZ protein expressed in Escherichia coli 25
3.2 Construct an adaptor protein of popZ and measure the protein-protein interaction 30
3.3 Construction the asymmetric transcription function in intracellular of E. coli via popZ/SpmXΔC system 35
3.4 Importing DivIVA and AmpC to restrict the diffusion of downstream effector proteins and expressed the antibiotic resistance in pT7 downstream 41
3.5 Establishing asymmetric functional protein expression in E. coli intracellular 46
3.6 Achieve functional asymmetric in E. coli after one cell division 53
3.7 Achieve protein asymmetry in E. coli via protein-protein regulation 58
Chapter 4 Conclusion and Future Work 62
Figures 64
Reference 97
dc.language.isoen
dc.title在大腸桿菌中建構細胞內的不對稱性和功能性的分化zh_TW
dc.titleConstruction of intracellular asymmetry and functional differentiation in Escherichia colien
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳亘承(Hsuan-Chen Wu),涂熊林(Hsiung-Lin Tu)
dc.subject.keyword不對稱細胞分裂,合成生物學,新月形桿菌,大腸桿菌,極區聚集蛋白,功能性分化,煙草蝕刻病毒蛋白酶,zh_TW
dc.subject.keywordAsymmetric cell division,Synthetic biology,Caulobacter crescentus,Escherichia coli,Polar organizing protein Z,Functional differentiation,Tobacco etch virus protease,en
dc.relation.page100
dc.identifier.doi10.6342/NTU202002426
dc.rights.note有償授權
dc.date.accepted2020-08-05
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
U0001-0508202000092500.pdf
  目前未授權公開取用
5.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved