請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53548完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳紀聖(Chi-Sheng Wu) | |
| dc.contributor.author | Yu-Kai Lin | en |
| dc.contributor.author | 林煜凱 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:25:36Z | - |
| dc.date.available | 2016-08-16 | |
| dc.date.copyright | 2015-08-16 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-06 | |
| dc.identifier.citation | 1. X. Feng and R. Y. M. Huang, Liquid Separation by Membrane Pervaporation: A Review. Industrial & Engineering Chemistry Research, 36 (1997) 1048-1066.
2. P. Sukitpaneenit, T.-S. Chung and L. Y. Jiang, Modified pore-flow model for pervaporation mass transport in PVDF hollow fiber membranes for ethanol–water separation. Journal of Membrane Science, 362 (2010) 393-406. 3. R. Y. M. Huang, Pervaporation separation processes: history, development and separation applications. 4. 王大銘, 滲透蒸發技術之發展. 台大工程學刊, (2002) 119-127. 5. M. Mulder, Basic Principles of Membrane Technology. Kluwer Academic Publishers, 1996, p. 336. 6. P. Shao and R. Y. M. Huang, Polymeric membrane pervaporation. Journal of Membrane Science, 287 (2007) 162-179. 7. P. D. Chapman, T. Oliveira, A. G. Livingston and K. Li, Membranes for the dehydration of solvents by pervaporation. Journal of Membrane Science, 318 (2008) 5-37. 8. T. Q. Nguyen and K. Nobe, Extraction of Organic Contaminants in Aqueous-Solutions by Pervaporation. Journal of Membrane Science, 30 (1987) 11-22. 9. K. W. Boddeker, G. Bengtson and E. Bode, Pervaporation of Low Volatility Aromatics from Water. Journal of Membrane Science, 53 (1990) 143-158. 10. W. Ji, S. K. Sikdar and S.-T. Hwang, Modeling of multicomponent pervaporation for removal of volatile organic compounds from water. Journal of Membrane Science, 93 (1994) 1-19. 11. L. Li, Z. Xiao, S. Tan, L. Pu and Z. Zhang, Composite PDMS membrane with high flux for the separation of organics from water by pervaporation. Journal of Membrane Science, 243 (2004) 177-187. 12. R. Psaume, P. Aptel, Y. Aurelle, J. C. Mora and J. L. Bersillon, Pervaporation - Importance of Concentration Polarization in The Extration of Trace Organics from Water. Journal of Membrane Science, 36 (1988) 373-384. 13. X. Feng and R. Y. M. Huang, Concentration polarization in pervaporation separation processes. Journal of Membrane Science, 92 (1994) 201-208. 14. B. Smitha, D. Suhanya, S. Sridhar and M. Ramakrishna, Separation of organic–organic mixtures by pervaporation—a review. Journal of Membrane Science, 241 (2004) 1-21. 15. A. Jonquières, R. Clément, P. Lochon, J. Néel, M. Dresch and B. Chrétien, Industrial state-of-the-art of pervaporation and vapour permeation in the western countries. Journal of Membrane Science, 206 (2002) 87-117. 16. C. Guizard, A. Bac, M. Barboiu and N. Hovnanian, Hybrid organic-inorganic membranes with specific transport properties: Applications in separation and sensors technologies. Separation and Purification Technology, 25 (2001) 167-180. 17. W. J. Koros, Gas separation membranes: Needs for combined materials science and processing approaches. Macromolecular Symposia, 188 (2002) 13-22. 18. L. M. Vane, V. V. Namboodiri and T. C. Bowen, Hydrophobic zeolite-silicone rubber mixed matrix membranes for ethanol-water separation: Effect of zeolite and silicone component selection on pervaporation performance. Journal of Membrane Science, 308 (2008) 230-241. 19. X. L. Liu, Y. S. Li, G. Q. Zhu, Y. J. Ban, L. Y. Xu and W. S. Yang, An Organophilic Pervaporation Membrane Derived from Metal-Organic Framework Nanoparticles for Efficient Recovery of Bio-Alcohols. Angewandte Chemie-International Edition, 50 (2011) 10636-10639. 20. W. Shi, B. He, J. Ding, J. Li, F. Yan and X. Liang, Preparation and characterization of the organic–inorganic hybrid membrane for biodiesel production. Bioresource Technology, 101 (2010) 1501-1505. 21. T. S. Chung, L. Y. Jiang, Y. Li and S. Kulprathipanja, Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Progress in Polymer Science, 32 (2007) 483-507. 22. L. Yan, Y. S. Li and C. B. Xiang, Preparation of poly(vinylidene fluoride)(pvdf) ultrafiltration membrane modified by nano-sized alumina (Al2O3) and its antifouling research. Polymer, 46 (2005) 7701-7706. 23. V. C. Souza and M. G. N. Quadri, Organic-Inorganic Hybrid Membranes in Separation Processes: A 10-Year Review. Brazilian Journal of Chemical Engineering, 30 (2013) 683-700. 24. IETS, Annex IX: Energy Efficient Separation Systems: Methodological Aspects, Demonstrations, and Economics. 2012. 25. H. Kita, S. Sasaki, K. Tanaka, K.-i. Okamoto and M. Yamamoto, Esterification of Carboxylic Acid with Ethanol Accompanied by Pervaporation. Chemistry Letters, 17 (1988) 2025-2028. 26. L. Bagnell, K. Cavell, A. M. Hodges, A. W. H. Mau and A. J. Seen, The use of catalytically active pervaporation membranes in esterification reactions to simultaneously increase product yield, membrane permselectivity and flux. Journal of Membrane Science, 85 (1993) 291-299. 27. Ó. de la Iglesia, R. Mallada, M. Menéndez and J. Coronas, Continuous zeolite membrane reactor for esterification of ethanol and acetic acid. Chemical Engineering Journal, 131 (2007) 35-39. 28. P. P. Lu, Z. L. Xu, X. H. Ma and Y. Cao, Preparation and Characterization of Perfluorosulfonic Acid Nanofiber Membranes for Pervaporation-Assisted Esterification. Industrial & Engineering Chemistry Research, 52 (2013) 8149-8156. 29. A. Dams and J. Krug. Pervaporation aided esterification-alternatives in plant extension for an existing chemical process. in Proceedings of Fifth International Conference on Pervaporation Processes in the Chemical Industry1991, or 338-348. 30. B. Lv, G. Liu, X. Dong, W. Wei and W. Jin, Novel Reactive Distillation–Pervaporation Coupled Process for Ethyl Acetate Production with Water Removal from Reboiler and Acetic Acid Recycle. Industrial & Engineering Chemistry Research, 51 (2012) 8079-8086. 31. S. Korkmaz, Y. Salt and S. Dincer, Esterification of Acetic Acid and Isobutanol in a Pervaporation Membrane Reactor Using Different Membranes. Industrial & Engineering Chemistry Research, 50 (2011) 11657-11666. 32. J. Ma, M. H. Zhang, L. Y. Lu, X. Yin, J. Chen and Z. Y. Jiang, Intensifying esterification reaction between lactic acid and ethanol by pervaporation dehydration using chitosan-TEOS hybrid membranes. Chemical Engineering Journal, 155 (2009) 800-809. 33. S. Steinigeweg and J. Gmehling, Transesterification processes by combination of reactive distillation and pervaporation. Chemical Engineering and Processing, 43 (2004) 447-456. 34. F. Aiouache and S. Goto, Reactive distillation–pervaporation hybrid column for tert-amyl alcohol etherification with ethanol. Chemical Engineering Science, 58 (2003) 2465-2477. 35. K. Tanaka, R. Yoshikawa, C. Ying, H. Kita and K.-i. Okamoto, Application of zeolite membranes to esterification reactions. Catalysis Today, 67 (2001) 121-125. 36. Z. Gao, Y. Yue and W. Li, Application of zeolite-filled pervaporation membrane. Zeolites, 16 (1996) 70-74. 37. Y. Zhu, R. G. Minet and T. T. Tsotsis, A continuous pervaporation membrane reactor for the study of esterification reactions using a composite polymeric/ceramic membrane. Chemical Engineering Science, 51 (1996) 4103-4113. 38. J. V. Gerpen, Biodiesel processing and production. Fuel Processing Technology, 86 (2005) 1097-1107. 39. D. Y. C. Leung, X. Wu and M. K. H. Leung, A review on biodiesel production using catalyzed transesterification. Applied Energy, 87 (2010) 1083-1095. 40. Y. Zhang, M. A. Dubé, D. D. McLean and M. Kates, Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresource Technology, 89 (2003) 1-16. 41. M. Tariq, S. Ali and N. Khalid, Activity of homogeneous and heterogeneous catalysts, spectroscopic and chromatographic characterization of biodiesel: A review. Renewable and Sustainable Energy Reviews, 16 (2012) 6303-6316. 42. B. Freedman, E. H. Pryde and T. L. Mounts, Variables affecting the yields of fatty esters from transesterified vegetable oils. Journal of the American Oil Chemists Society, 61 (1984) 1638-1643. 43. D. Han, L. Yan, W. Chen and W. Li, Preparation of chitosan/graphene oxide composite film with enhanced mechanical strength in the wet state. Carbohydrate Polymers, 83 (2011) 653-658. 44. V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker and S. Seal, Graphene based materials: Past, present and future. Progress in Materials Science, 56 (2011) 1178-1271. 45. W. S. Hummers and R. E. Offeman, Preparation of Graphitic Oxide. Journal of the American Chemical Society, 80 (1958) 1339-1339. 46. T. G. Optimistic, Graphene Oxide Offers New Hope for Water Decontamination. 47. M. Ghazali, M. Nawawi and R. Y. M. Huang, Pervaporation dehydration of isopropanol with chitosan membranes. Journal of Membrane Science, 124 (1997) 53-62. 48. Chemik, Chitosan-silver nanocomposites? modern antibacterial materials. 49. Wikipedia, SEM. 50. Warwick, SEM. 51. S. H. University, Gas Chromatography. 52. Wikipedia, 傅里葉轉換紅外光譜. 53. Wikipedia, Contact Angle. 54. C. I. o. Technology, AIOMFAC. 2012. 55. P. P. Zuo, H. F. Feng, Z. Z. Xu, L. F. Zhang, Y. L. Zhang, W. Xia and W. Q. Zhang, Fabrication of biocompatible and mechanically reinforced graphene oxide-chitosan nanocomposite films. Chemistry Central Journal, 7 (2013) 56. W. C. Lee, C. H. Y. X. Lim, H. Shi, L. A. L. Tang, Y. Wang, C. T. Lim and K. P. Loh, Origin of Enhanced Stem Cell Growth and Differentiation on Graphene and Graphene Oxide. ACS Nano, 5 (2011) 7334-7341. 57. D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu and J. M. Tour, Improved Synthesis of Graphene Oxide. ACS Nano, 4 (2010) 4806-4814. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53548 | - |
| dc.description.abstract | 文獻指出分離程序的操作成本占化工產業的一半以上,而整合滲透蒸發技術將大幅減少能源消耗。我們設計滲透蒸發反應器,使用氧化石墨烯/幾丁聚醣複合膜,將乙酸、乙醇酯化反應程序與滲透蒸發結合,實驗顯示此膜能維持一定的對水選擇率將生成的水移除,根據勒沙特列原理反應向右而突破平衡轉化率。並探討反應溫度、固體酸觸媒用量、初始反應物莫爾比的影響,結果顯示提高反應溫度、觸媒用量對轉化率提升有正面助益,初始反應物莫爾比則有一最適比例,在初始乙醇/乙酸比=2:1、反應溫度70oC、2.25wt%觸媒量情況下,相比平衡的情況可提升8%轉化率。
並嘗試結合滲透蒸發與預酯化,由於生質柴油的原料油為廢食用油,其中含有2~7%的自由脂肪酸(Free Fatty Acid),會與鹼觸媒發生皂化,降低觸媒效率,所以進行轉酯化前會先用酸觸媒進行預酯化降低FFA至0.5wt%以下。我們嘗試結合滲透蒸發提升預酯化去除自由脂肪酸效果,選擇棕櫚酸與過量甲醇進行反應,尋找適當動力參數,當甲醇:棕櫚酸=20:1、10wt%Amberlyst 15觸媒、4wt%氧化石墨烯複合膜、反應溫度50oC,在8小時內可以提升20%轉化率。 | zh_TW |
| dc.description.abstract | The separation process accounts for over 50% of the operating cost in chemical engineering industry based on the literature survey. A pervaporation process with existed distillation tower would significantly reduce energy consumption. We designed a system of pervaporation apparatus and used graphene oxide/chitosan membrane. The esterification of ethanol and acetic acid with pervaporation was performed, and the experiment results showed that the conversion is enhanced due to continuous removal of the water from the solution. The overall reaction favors the product side as described by Le Chatelier principle.
We investigated various kinetic parameters included reaction temperature, loadings of solid acid catalyst and initial molar ratio of ethanol to acid. The results showed higher temperature and more catalyst loadings had positive influence. The conversion increased 8% under the optimal conditions at 70oC, 2.25wt% catalyst and initial ratio of ethanol to acetic acid =2:1 . In addition, we tried the combination of pervaporation and pre-esterification process of biodiesel production. There existed 2 to 7wt% of free fatty acid (FFA) in the feedstock. FFA would react with base catalyst to produce soap and reduce the yield of biodiesel. Generally, the pre-esterification was applied before transesterification step to reduce the amount of FFA lower than 0.5wt%. We integrated pervaporation with pre-esterification together to study the enhancement of eliminating FFA. We chose palmitic acid as a representative of FFA. The conversion was enhanced by 20% under the conditions, methanol: palmitic acid=20:1 and 10wt% of solid acid catalyst at 50oC. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:25:36Z (GMT). No. of bitstreams: 1 ntu-104-R02524060-1.pdf: 5498012 bytes, checksum: 03a67e2bdfb7be6b4595f45eb416d49e (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES ix LIST OF TABLES xiv Chapter 1 緒論 1 Chapter 2 文獻回顧 2 2.1 滲透蒸發的原理及分離機制 2 2.1.1 The solution-diffusion model 5 2.1.2 Pore-flow model 7 2.2 滲透蒸發的發展 9 2.3 滲透蒸發的應用 10 2.3.1 脫水 10 2.3.2 移除稀薄溶液內的有機物 12 2.3.3 有機-有機分離 14 2.4 複合薄膜(Mixed Matrix Membrane)介紹 15 2.4.1 溶膠-凝膠法(Sol-gel method) 17 2.4.2 相反轉法(phase inversion method) 18 2.4.3 介面聚合法(interfacial polymerization) 18 2.5 反應結合滲透蒸發的相關研究 20 2.5.1 滲透蒸發結合酯化反應 20 2.6 生質柴油 27 2.6.1 鹼觸媒 27 2.6.2 酸觸媒 27 2.6.3 酯化-轉酯化反應(Esterification- Transesterification Reaction) 28 2.7 氧化石墨烯簡介 29 2.8 幾丁聚醣簡介 30 Chapter 3 實驗方法與儀器 31 3.1 實驗藥品與儀器設備 31 3.1.1 藥品 31 3.1.2 氣體 31 3.1.3 器材 31 3.2 薄膜特性與反應分析原理 33 3.2.1 場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope, SEM) 33 3.2.2 氣相管柱層析儀(Gas Chromatography, GC) 35 3.2.3 熱重分析儀(Thermogravimetric Analysis, TGA) 36 3.2.4 傅立葉轉換紅外線光譜儀(Fourier-Transform Infrared Spectrometer, FTIR) 36 3.2.5 接觸角儀(Contact Angle System) 37 3.3 反應結合滲透蒸發系統 39 3.3.1 滲透蒸發薄膜反應器 39 3.4 反應結合滲透蒸發實驗方法 42 3.4.1 滲透蒸發實驗步驟 42 3.4.2 酯化結合滲透蒸發實驗步驟 42 3.4.3 酯化產物分析 43 3.4.4 預酯化產物分析 47 Chapter 4 複合膜特性分析與討論 49 4.1 接觸角分析 49 4.2 SEM 51 4.3 傅立葉轉換紅外線光譜 54 4.4 熱重分析 58 Chapter 5 酯化反應結合滲透蒸發實驗結果與討論 59 5.1不同反應溫度的影響 59 5.1.1 轉化率 59 5.1.2 反應端組成變化 61 5.1.3 通量 62 5.1.4 比較溫度對滲透率Permeance的影響 64 5.1.5 改變反應溫度的反應速率與移除速率比較 66 5.2 不同初始醇/酸比的影響 68 5.2.1 改變初始醇/酸比對轉化率影響 68 5.2.2 反應端組成變化 70 5.2.3 改變醇酸比對通量影響 72 5.2.4 改變醇酸比對滲透率影響 74 5.2.5 改變初始莫爾比的反應速率與移除速率比較 76 5.3 改變觸媒用量的影響 79 5.3.1 1.5wt%與2.25wt%轉化率比較 79 5.3.2 1.5wt%與2.25wt%的反應端組成比較 80 5.3.3 1.5wt%與2.25wt%滲透端組成比較 82 5.3.4 改變觸媒用量的反應速率與移除速率比較 83 5.4 改變氧化石墨烯摻雜量的影響 85 5.4.1 改變氧化石墨烯摻雜量對轉化率的影響 85 5.4.2 反應端組成變化 86 5.4.3 滲透端組成變化 88 5.4.4 不同氧化石墨烯比例的膜對通量影響 89 5.4.5 滲透率Permeance 91 5.5 膜重複使用性 93 5.5.1 轉化率 93 5.5.2 反應端組成變化 94 5.5.3 通量 95 5.5.4 滲透率Permeance 96 5.6 預酯化結合膜反應器 97 5.6.1 改變進料比 99 5.6.2 改變溫度 101 5.6.3 改變觸媒用量 103 Chapter 6 結論 105 REFERENCE 107 附錄…………………………………………………………………………………... 110 個人小傳 115 | |
| dc.language.iso | zh-TW | |
| dc.subject | 酯化反應 | zh_TW |
| dc.subject | 生質柴油 | zh_TW |
| dc.subject | 有機/無機複合膜 | zh_TW |
| dc.subject | 滲透蒸發 | zh_TW |
| dc.subject | Pervaporation | en |
| dc.subject | biodiesel | en |
| dc.subject | Organic/Inorganic hybrid membrane | en |
| dc.subject | Esterification | en |
| dc.title | 結合滲透蒸發的氧化石墨烯/甲殼素複合膜反應器以提升酯化反應效率 | zh_TW |
| dc.title | Enhancing esterification by pervaporation using membrane reactor of graphene oxide/chitosan composite membrane | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李明哲(Ming-Jer Lee),童國倫(Kuo-Lun Tung) | |
| dc.subject.keyword | 滲透蒸發,酯化反應,有機/無機複合膜,生質柴油, | zh_TW |
| dc.subject.keyword | Pervaporation,Esterification,Organic/Inorganic hybrid membrane,biodiesel, | en |
| dc.relation.page | 115 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-06 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 5.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
