Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53544
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭光宇
dc.contributor.authorRung-Yi Hungen
dc.contributor.author洪榮億zh_TW
dc.date.accessioned2021-06-16T02:25:33Z-
dc.date.available2015-08-06
dc.date.copyright2015-08-06
dc.date.issued2015
dc.date.submitted2015-08-06
dc.identifier.citation[1] D. E. Sheehy and J. Schmalian, Optical transparency of graphene as determined by the fine-structure constant, Phys. Rev. B 80, 193411 (2009)
[2] S. Das Sarma and E. H. Hwang, Collective Modes of the Massless Dirac Plasma, Phys. Rev. Lett. 102, 206412 (2009)
[3] A. Nagashima, K. Nuka, H. Itoh, T. Ichinokawa, C. Oshima, S. Otani, and Y. Ishizawa, Solid State Commun. 83, 581 (1992)
[4] Y. Liu, R. F. Willis, K. V. Emtsev, and Th. Seyller, Plasmon dispersion and damping in electrically isolated two-dimensional charge sheets, Phys. Rev. B 78, 201403 (2008).
[5] C. Tegenkamp, H. Pfnぴur, T. Langer, J. Baringhaus, and H. W. Schumacher, Plasmon electron–hole resonance in epitaxial graphene, J. Phys. Condens. Matter 23, 012001 (2011)
[6] F. Stern, Polarizability of a Two-Dimensional Electron Gas, Phys. Rev. Lett. 18, 546 (1967)
[7] H Liu, Y Liu, D Zhu, Chemical doping of graphene, J. Mater. Chem., (2011)
[8] C. S. Shie, Plasmon Excitations in Two- and Three- Dimension Hexagonal Carbon and Boron Nitride Materials Studied by Time-dependent Density-functional Calculations (MA thesis), National Taiwan University (2014)
[9] S. C. Liou, C. S. Shie, C. H. Chen, R. Breitwieser, W. W. Pai, G. Y. Guo, and M.-W. Chu, π-plasmon dispersion in free-standing graphene by momentum-resolved electron energy-loss spectroscopy, Phys. Rev. B 91, 045418 (2015)
[10] C. A. Rozzi, D. Varsano, A. Marini, E. K. U. Gross, and A. Rubio, Exact Coulomb cutoff technique for supercell calculations, Phys. Rev. B 73, 205119 (2006)
[11] E. K. U. Gross, W Kohn, Advances in Quantum Chemistry Volume 21 (1990)
[12] D.R. Hartree, Quantum Chemical Methods, Proc. Cambridge Phil. Soc. 24, 89 (1928)
[13] L. H. Thomas, The calculation of atomic fields, Proceedings of the Cambridge Philosophical Society, vol. 23, issue 05, p. 542 (1927)
[14] E. Fermi, Un Metodo Statistico per la Determinazione di alcune Prioprietà dell'Atomo, Rendiconti: Accademia Nazionale dei Lincei, vol. 6, pp. 602–607, (1927)
[15] W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140, A1133 (1965)
[16] P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136, B864 (1964)
[17] M. E. Casida1, C. Jamorski1, K. C. Casida1 and D. R. Salahub1, Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold, J. Chem. Phys. 108, 4439 (1998)
[18] J. W. Negele, Structure of Finite Nuclei in the Local-Density Approximation, Phys. Rev. C 1, 1260 (1970)
[19] C. Jacoboni and L. Reggiani, The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials, Rev. Mod. Phys. 55, 645 (1983)
[20] R. Y. Rubinstein, D. P. Kroese, Simulation and the Monte Carlo method (2011)
[21] R. F. Egerton, electron energy-loss spectroscopy in the electron microscope, (2011)
[22] J. Yan, J. J. Mortensen, K. W. Jacobsen, and K. S. Thygesen, Linear density response function in the projector augmented wave method: Applications to solids, surfaces, and interfaces, Phys. Rev. B 83, 245122, (2011)
[23] S. L. Adler, Quantum Theory of the Dielectric Constant in Real Solids, Phys. Rev. 126, 413 (1962)
[24] N. Wiser, Dielectric Constant with Local Field Effects Included, Phys. Rev. 129, 62 (1963)
[25] M. S. Hybertsen and S. G. Louie, Ab initio static dielectric matrices from the density-functional approach. I. Formulation and application to semiconductors and insulators, Phys. Rev. B 35, 5585 (1987)
[26] N. Nemec, D. Tománek, and G. Cuniberti, Contact Dependence of Carrier Injection in Carbon Nanotubes: An Ab Initio Study, Phys. Rev. Lett. 96, 076802 (2006)
[27] J. J. Mortensen, L. B. Hansen, and K. W. Jacobsen, Real-space grid implementation of the projector augmented wave method, Phys. Rev. B 71, 035109 (2005)
[28] M. Walter, H. Häkkinen, L. Lehtovaara, M. Puska, J. Enkovaara, C. Rostgaard, and J. J. Mortensen, Upconversion-induced fluorescence in multicomponent systems: Steady-state excitation power threshold, Phys. Rev. B 80, 195112 (2009)
[29] T. Susi, D. J. Mowbray, M. P. Ljungberg, and P. Ayala, Calculation of the graphene C 1s core level binding energy, Phys. Rev. B 91, 081401(R) (2015)
[30] T. Ono and K. Hirose, First-Principles Study of Electron-Conduction Properties of C60 Bridges, Phys. Rev. Lett. 98, 026804 (2007)
[31] E. R. Hernández, S. Janecek, M. Kaczmarski, and E. Krotscheck, Evolution-operator method for density functional theory, Phys. Rev. B 75, 075108 (2007)
[32] G. Y. Guo and J. C. Lin, Systematic ab initio study of the optical properties of BN nanotubes, Phys. Rev. B 71, 165402 (2005)
[33] D. E. Moncton, J. D. Axe, and F. J. DiSalvo, Neutron scattering study of the charge-density wave transitions in 2H−TaSe2 and 2H−NbSe2, Phys. Rev. B 16, 801 (1977)
[34] K. Andersen and K. S. Thygesen, Plasmons in metallic monolayer and bilayer transition metal dichalcogenides, Phys. Rev. B 88, 155128 (2013)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53544-
dc.description.abstract石墨烯是由碳原子以sp2混成軌域所組成的六角型呈蜂巢晶格的平面薄膜,其電阻率極低,因此可望用來製造導電速度更快的電子元件,是近年來備受矚目的新興材料。
藉由引入庫倫位能阻斷的修正,以及更精確的動量解析度後,我們利用時間相關密度泛函理論計算石墨烯在倒晶格空間中不同方向的電子能量損失譜,我們發現石墨烯的 π 電漿子呈現根號q的色散關係,即電漿子能量正比於動量開根號,此結果不同於先前預測由二維狄拉克電漿子所造成的線性色散關係。此外我們也藉由計算在倒晶格空間中不同方向的電子能量損失譜,探討石墨烯在倒晶格空間的非等方向性。
我們也利用時間相關密度泛函理論計算數種二維材料 (二維六方氮化硼、單層二硒化鉭) 在倒晶格空間中不同方向的電子能量損失譜,探討其在倒晶格空間的的非等方向性,以及電漿子的色散關係。
zh_TW
dc.description.abstractGraphene is one of the most popular materials in recent years. It is composed of a single-atom-thick hexagonal lattice of sp2-bonded carbon atoms. Its resistivity is extremely low so that it is expected to produce electric devices of which electric conductivity is better than that of currently existing electric devices.
With the exact Coulomb cutoff technique and a better momentum q resolution, we perform time-dependent density-functional theory calculations to study electron energy loss spectra for graphene in reciprocal space. We find that the dispersion relation of π- plasmon shows a square root q dispersion, being opposite to previous studies which reported a linear q dispersion resulted from two-dimensional Dirac plasmon. Furthermore, we also investigate the electronic anisotropy of graphene by calculating electron energy loss spectra in different directions in reciprocal space.
We also use the time-dependent density-functional theory to calculate electron energy loss spectra for other emergent layered materials, namely, the boron nitride monolayer and the 2H-TaSe2 monolayer to discuss electronic anisotropy and dispersion relation of plasmon.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:25:33Z (GMT). No. of bitstreams: 1
ntu-104-R02222036-1.pdf: 2150523 bytes, checksum: 5c00fcb2010332002b92efaa1324a6f7 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 1
中文摘要 2
ABSTRACT 3
CONTENTS 4
LIST OF FIGURES 6
Chapter 1 Introduction 10
Chapter 2 Theory and Computational Method 13
2.1 Density functional theory 13
2.2 Hohenberg-Kohn theorem 15
2.3 Kohn-Sham equation 18
2.4 Exchange-correlation energy 19
2.5 Electron energy loss spectroscopy 20
2.6 Exact Coulomb cutoff technique 23
Chapter 3 Electronic Structure and Optical Properties of Graphene 25
3.1 Introduction and computational details 25
3.2 Electronic band structure of graphene 27
3.3 Effect of exact Coulomb cutoff technique 28
3.4 Electron energy-loss spectra of graphene 31
3.5 Plasmon dispersion relations in graphene 36
Chapter 4 Electronic Structure and Optical Properties of Boron Nitride Monolayer 43
4.1 Introduction and computational details 43
4.2 Electronic band structure of boron nitride monolayer 45
4.3 Electron energy-loss spectra of boron nitride monolayer 46
4.4 Plasmon dispersion relations in boron nitride monolayer 49
Chapter 5 Electronic Structure and Optical Properties of 2H-TaSe2 monolayer 57
5.1 Introduction and computational details 57
5.2 Electronic band structure of 2H-TaSe2 monolayer 59
5.3 Electron energy-loss spectra of 2H-TaSe2 monolayer 60
5.4 Plasmon dispersion relations in 2H-TaSe2 monolayer 63
Chapter 6 Conclusions 71
REFERENCES 72
dc.language.isoen
dc.title以時間相關密度泛函理論研究新興二維材料之電漿子激發zh_TW
dc.titlePlasmon Excitations in Emergent Two-Dimensional Materials Studied by Time-dependent Density-functional Calculationsen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee梁贊全,胡崇德,薛宏中,魏金明
dc.subject.keyword電漿子激發,時間相關密度泛函理論,電子能量損失能譜,zh_TW
dc.subject.keywordPlasmon Excitation,Time-dependent density functional theory,Electron energy loss spectroscopy,en
dc.relation.page75
dc.rights.note有償授權
dc.date.accepted2015-08-06
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
2.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved