Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53533
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor阮雪芬(Hsueh-Fen Juan)
dc.contributor.authorTzu-Ting Kuoen
dc.contributor.author郭子霆zh_TW
dc.date.accessioned2021-06-16T02:25:28Z-
dc.date.available2020-08-07
dc.date.copyright2015-08-07
dc.date.issued2015
dc.date.submitted2015-08-06
dc.identifier.citation1. Gurney JG, Ross JA, Wall DA, Bleyer WA, Severson RK, Robison LL. Infant cancer in the U.S.: histology-specific incidence and trends, 1973 to 1992. Journal of pediatric hematology/oncology. 1997; 19(5):428-432.
2. Brodeur GM. Neuroblastoma: biological insights into a clinical enigma. Nature reviews Cancer. 2003; 3(3):203-216.
3. Friedman GK, Castleberry RP. Changing trends of research and treatment in infant neuroblastoma. Pediatric blood & cancer. 2007; 49(7 Suppl):1060-1065.
4. Hasan MK, Nafady A, Takatori A, Kishida S, Ohira M, Suenaga Y, Hossain S, Akter J, Ogura A, Nakamura Y, Kadomatsu K, Nakagawara A. ALK is a MYCN target gene and regulates cell migration and invasion in neuroblastoma. Scientific reports. 2013; 3:3450.
5. Ora I, Eggert A. Progress in treatment and risk stratification of neuroblastoma: impact on future clinical and basic research. Seminars in cancer biology. 2011; 21(4):217-228.
6. Cimmino F, Pezone L, Avitabile M, Acierno G, Andolfo I, Capasso M, Iolascon A. Inhibition of hypoxia inducible factors combined with all-trans retinoic acid treatment enhances glial transdifferentiation of neuroblastoma cells. Scientific reports. 2015; 5:11158.
7. Maris JM, Hogarty MD, Bagatell R, Cohn SL. Neuroblastoma. Lancet. 2007; 369(9579):2106-2120.
8. Castel V, Grau E, Noguera R, Martinez F. Molecular biology of neuroblastoma. Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico. 2007; 9(8):478-483.
9. Fiegel HC, Kaifi JT, Wachowiak R, Quaas A, Aridome K, Ichihara-Tanaka K, Muramatsu T, Metzger R, Izbicki JR, Erttmann R, Kluth D, Till H. Midkine is highly expressed in neuroblastoma tissues. Pediatric surgery international. 2008; 24(12):1355-1359.
10. Knudson AG, Jr., Strong LC. Mutation and cancer: neuroblastoma and pheochromocytoma. American journal of human genetics. 1972; 24(5):514-532.
11. Kushner BH, Gilbert F, Helson L. Familial neuroblastoma. Case reports, literature review, and etiologic considerations. Cancer. 1986; 57(9):1887-1893.
12. Ward E, DeSantis C, Robbins A, Kohler B, Jemal A. Childhood and adolescent cancer statistics, 2014. CA: a cancer journal for clinicians. 2014; 64(2):83-103.
13. Claviez A, Lakomek M, Ritter J, Suttorp M, Kremens B, Dickerhoff R, Harms D, Berthold F, Hero B. Low occurrence of familial neuroblastomas and ganglioneuromas in five consecutive GPOH neuroblastoma treatment studies. European journal of cancer. 2004; 40(18):2760-2765.
14. Shojaei-Brosseau T, Chompret A, Abel A, de Vathaire F, Raquin MA, Brugieres L, Feunteun J, Hartmann O, Bonaiti-Pellie C. Genetic epidemiology of neuroblastoma: a study of 426 cases at the Institut Gustave-Roussy in France. Pediatric blood & cancer. 2004; 42(1):99-105.
15. Williams TH, House RF, Jr., Burgert EO, Jr., Lynn HB. Unusual manifestations of neuroblastoma: chronic diarrhea, polymyoclonia-opsoclonus, and erythrocyte abnormalities. Cancer. 1972; 29(2):475-480.
16. Weir HK, Thun MJ, Hankey BF, Ries LA, Howe HL, Wingo PA, Jemal A, Ward E, Anderson RN, Edwards BK. Annual report to the nation on the status of cancer, 1975-2000, featuring the uses of surveillance data for cancer prevention and control. Journal of the National Cancer Institute. 2003; 95(17):1276-1299.
17. Monclair T, Brodeur GM, Ambros PF, Brisse HJ, Cecchetto G, Holmes K, Kaneko M, London WB, Matthay KK, Nuchtern JG, von Schweinitz D, Simon T, Cohn SL, et al. The International Neuroblastoma Risk Group (INRG) staging system: an INRG Task Force report. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2009; 27(2):298-303.
18. Schleiermacher G, Rubie H, Hartmann O, Bergeron C, Chastagner P, Mechinaud F, Michon J, Neuroblastoma Study Group of the French Society of Paediatric O. Treatment of stage 4s neuroblastoma--report of 10 years' experience of the French Society of Paediatric Oncology (SFOP). British journal of cancer. 2003; 89(3):470-476.
19. Strenger V, Kerbl R, Dornbusch HJ, Ladenstein R, Ambros PF, Ambros IM, Urban C. Diagnostic and prognostic impact of urinary catecholamines in neuroblastoma patients. Pediatric blood & cancer. 2007; 48(5):504-509.
20. Fritsch P, Kerbl R, Lackner H, Urban C. 'Wait and see' strategy in localized neuroblastoma in infants: an option not only for cases detected by mass screening. Pediatric blood & cancer. 2004; 43(6):679-682.
21. Kushner BH, Modak S, Kramer K, Basu EM, Roberts SS, Cheung NK. Ifosfamide, carboplatin, and etoposide for neuroblastoma: a high-dose salvage regimen and review of the literature. Cancer. 2013; 119(3):665-671.
22. Kim DW, Jo YH, Kim JH, Wu HG, Rhee CS, Lee CH, Kim TY, Heo DS, Bang YJ, Kim NK. Neoadjuvant etoposide, ifosfamide, and cisplatin for the treatment of olfactory neuroblastoma. Cancer. 2004; 101(10):2257-2260.
23. Matthay KK, O'Leary MC, Ramsay NK, Villablanca J, Reynolds CP, Atkinson JB, Haase GM, Stram DO, Seeger RC. Role of myeloablative therapy in improved outcome for high risk neuroblastoma: review of recent Children's Cancer Group results. European journal of cancer. 1995; 31A(4):572-575.
24. Park JR, Villablanca JG, London WB, Gerbing RB, Haas-Kogan D, Adkins ES, Attiyeh EF, Maris JM, Seeger RC, Reynolds CP, Matthay KK, Children's Oncology G. Outcome of high-risk stage 3 neuroblastoma with myeloablative therapy and 13-cis-retinoic acid: a report from the Children's Oncology Group. Pediatric blood & cancer. 2009; 52(1):44-50.
25. Schwab M, Alitalo K, Klempnauer KH, Varmus HE, Bishop JM, Gilbert F, Brodeur G, Goldstein M, Trent J. Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell lines and a neuroblastoma tumour. Nature. 1983; 305(5931):245-248.
26. Wenzel A, Schwab M. The mycN/max protein complex in neuroblastoma. Short review. European journal of cancer. 1995; 31A(4):516-519.
27. Seeger RC, Wada R, Brodeur GM, Moss TJ, Bjork RL, Sousa L, Slamon DJ. Expression of N-myc by neuroblastomas with one or multiple copies of the oncogene. Progress in clinical and biological research. 1988; 271:41-49.
28. Brodeur GM, Seeger RC, Schwab M, Varmus HE, Bishop JM. Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science. 1984; 224(4653):1121-1124.
29. Sommer A, Bousset K, Kremmer E, Austen M, Luscher B. Identification and characterization of specific DNA-binding complexes containing members of the Myc/Max/Mad network of transcriptional regulators. The Journal of biological chemistry. 1998; 273(12):6632-6642.
30. Murphy DM, Buckley PG, Bryan K, Das S, Alcock L, Foley NH, Prenter S, Bray I, Watters KM, Higgins D, Stallings RL. Global MYCN transcription factor binding analysis in neuroblastoma reveals association with distinct E-box motifs and regions of DNA hypermethylation. PloS one. 2009; 4(12):e8154.
31. Maskos U, Southern EM. Oligonucleotide hybridizations on glass supports: a novel linker for oligonucleotide synthesis and hybridization properties of oligonucleotides synthesised in situ. Nucleic acids research. 1992; 20(7):1679-1684.
32. Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995; 270(5235):467-470.
33. Maher CA, Kumar-Sinha C, Cao X, Kalyana-Sundaram S, Han B, Jing X, Sam L, Barrette T, Palanisamy N, Chinnaiyan AM. Transcriptome sequencing to detect gene fusions in cancer. Nature. 2009; 458(7234):97-101.
34. Nagalakshmi U, Waern K, Snyder M. RNA-Seq: a method for comprehensive transcriptome analysis. Current protocols in molecular biology / edited by Frederick M Ausubel [et al]. 2010; Chapter 4:Unit 4 11 11-13.
35. Braun R. Systems analysis of high-throughput data. Advances in experimental medicine and biology. 2014; 844:153-187.
36. Suarez E, Burguete A, McLachlan GJ. Microarray data analysis for differential expression: a tutorial. Puerto Rico health sciences journal. 2009; 28(2):89-104.
37. Park PJ. ChIP-seq: advantages and challenges of a maturing technology. Nature reviews Genetics. 2009; 10(10):669-680.
38. Aparicio O, Geisberg JV, Struhl K. (2004). Chromatin immunoprecipitation for determining the association of proteins with specific genomic sequences in vivo. Current protocols in cell biology / editorial board, Juan S Bonifacino [et al], pp. Unit 17 17.
39. Robertson G, Hirst M, Bainbridge M, Bilenky M, Zhao Y, Zeng T, Euskirchen G, Bernier B, Varhol R, Delaney A, Thiessen N, Griffith OL, He A, et al. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nature methods. 2007; 4(8):651-657.
40. Ho JW, Bishop E, Karchenko PV, Negre N, White KP, Park PJ. ChIP-chip versus ChIP-seq: lessons for experimental design and data analysis. BMC genomics. 2011; 12:134.
41. Christensen KE, MacKenzie RE. Mitochondrial one-carbon metabolism is adapted to the specific needs of yeast, plants and mammals. BioEssays : news and reviews in molecular, cellular and developmental biology. 2006; 28(6):595-605.
42. Di Pietro E, Sirois J, Tremblay ML, MacKenzie RE. Mitochondrial NAD-dependent methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase is essential for embryonic development. Molecular and cellular biology. 2002; 22(12):4158-4166.
43. Di Pietro E, Wang XL, MacKenzie RE. The expression of mitochondrial methylenetetrahydrofolate dehydrogenase-cyclohydrolase supports a role in rapid cell growth. Biochimica et biophysica acta. 2004; 1674(1):78-84.
44. Tibbetts AS, Appling DR. Compartmentalization of Mammalian folate-mediated one-carbon metabolism. Annual review of nutrition. 2010; 30:57-81.
45. Momb J, Lewandowski JP, Bryant JD, Fitch R, Surman DR, Vokes SA, Appling DR. Deletion of Mthfd1l causes embryonic lethality and neural tube and craniofacial defects in mice. Proceedings of the National Academy of Sciences of the United States of America. 2013; 110(2):549-554.
46. Bolusani S, Young BA, Cole NA, Tibbetts AS, Momb J, Bryant JD, Solmonson A, Appling DR. Mammalian MTHFD2L encodes a mitochondrial methylenetetrahydrofolate dehydrogenase isozyme expressed in adult tissues. The Journal of biological chemistry. 2011; 286(7):5166-5174.
47. Nilsson R, Jain M, Madhusudhan N, Sheppard NG, Strittmatter L, Kampf C, Huang J, Asplund A, Mootha VK. Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer. Nature communications. 2014; 5:3128.
48. Lehtinen L, Ketola K, Makela R, Mpindi JP, Viitala M, Kallioniemi O, Iljin K. High-throughput RNAi screening for novel modulators of vimentin expression identifies MTHFD2 as a regulator of breast cancer cell migration and invasion. Oncotarget. 2013; 4(1):48-63.
49. Selcuklu SD, Donoghue MT, Rehmet K, de Souza Gomes M, Fort A, Kovvuru P, Muniyappa MK, Kerin MJ, Enright AJ, Spillane C. MicroRNA-9 inhibition of cell proliferation and identification of novel miR-9 targets by transcriptome profiling in breast cancer cells. The Journal of biological chemistry. 2012; 287(35):29516-29528.
50. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nature methods. 2012; 9(4):357-359.
51. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, Liu XS. Model-based analysis of ChIP-Seq (MACS). Genome biology. 2008; 9(9):R137.
52. Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Briefings in bioinformatics. 2013; 14(2):178-192.
53. Brodeur GM, Bagatell R. Mechanisms of neuroblastoma regression. Nature reviews Clinical oncology. 2014; 11(12):704-713.
54. Christensen KE, Deng L, Leung KY, Arning E, Bottiglieri T, Malysheva OV, Caudill MA, Krupenko NI, Greene ND, Jerome-Majewska L, MacKenzie RE, Rozen R. A novel mouse model for genetic variation in 10-formyltetrahydrofolate synthetase exhibits disturbed purine synthesis with impacts on pregnancy and embryonic development. Human molecular genetics. 2013; 22(18):3705-3719.
55. Vazquez A, Markert EK, Oltvai ZN. Serine biosynthesis with one carbon catabolism and the glycine cleavage system represents a novel pathway for ATP generation. PloS one. 2011; 6(11):e25881.
56. Westermann F, Muth D, Benner A, Bauer T, Henrich KO, Oberthuer A, Brors B, Beissbarth T, Vandesompele J, Pattyn F, Hero B, Konig R, Fischer M, et al. Distinct transcriptional MYCN/c-MYC activities are associated with spontaneous regression or malignant progression in neuroblastomas. Genome biology. 2008; 9(10):R150.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53533-
dc.description.abstract神經母細胞瘤 (Neuroblastoma) 是胚胎在發育的過程中交感神經脊分化失敗形成惡性腫瘤的一種兒童癌症,臨床研究發現轉錄因子MYCN基因擴增的現象和神經母細胞瘤的不良預後及惡化程度具有關聯性,但目前對於MYCN如何去調控腫瘤的進程機制仍然尚未明瞭。在本篇研究中我們先從基因表達綜合數據庫 (Gene expression Omnibus, GEO) 分別將高風險 (年齡大於18個月,第四期) 的神經母細胞瘤病人分成MYCN多倍數與非多倍數去做微陣列基因顯著性分析驗證 (significance analysis of microarrays, SAM),發現在MYCN多倍數的神經母細胞瘤病人中其亞甲基四氫葉酸脫氫酶2 (MTHFD2) 也會顯著地被表現,兩者間具有高度正相關 (P < 0.001)。此外在我們染色質免疫沉澱–測序(ChIP-Seq)的結果中也發現,MYCN會在亞甲基四氫葉酸脫氫酶2的轉錄起始點附近區域有很強的結合 (P = 3.7e-18)。MTHFD2在胚胎發育時期扮演單碳代謝途徑的重要酵素,目前研究指出MTHFD2的表現和乳癌的低存活率有關,在我們神經母細胞瘤病人的存活率分析中也看到了一樣的情形 (P < 2.4e-13),由上述的資料分析,我們推測MYCN會調控MTHFD2的表現而影響神經母細胞瘤的進程。為了確定他們之間的相關性,我們分別在神經母細胞瘤細胞株中抑制或增加MYCN的表現量,發現MTHFD2的表現量也會與之有相同趨勢的改變。更進一步,啟動子冷光偵測結果顯示MTHFD2是一個受MYCN直接轉錄調控的基因。接著我們於MYCN高表現的SK-N-DZ細胞株中利用小髮夾核醣核酸 (shRNA) 抑制MTHFD2,亦或是在MYCN低表現的SK-N-AS細胞株中大量表現MTHFD2,由結果發現MTHFD2會促使神經母細胞瘤細胞株的生長。這項研究結果指出MTHFD2在神經母細胞瘤的進程中或許扮演重要的角色,也許是未來治療神經母細胞瘤的一項潛力。zh_TW
dc.description.abstractNeuroblastoma (NBL) is a pediatric cancer derived from the sympathetic lineage of the neural crest with improper differentiation during development. The amplification of V-myc avian myelocytomatosis viral oncogene neuroblastoma derived homolog (MYCN) is a clinical feature associated with the poor prognosis of NBL while the underlying mechanism still remains elusive. In this study, we first integrated several expression datasets from Gene Expression Omnibus (GEO) and performed significance analysis of microarrays (SAM) in high-risk NBL of patients with or without MYCN amplification. We found that MTHFD2 (methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 2, methenyltetrahydrofolate cyclohydrolase), a mitochondrial enzyme required for one-carbon metabolism and purine synthesis, was differentially up-regulated in NBL with MYCN amplification (P < 0.001). Additionally, in our chromatin immunoprecipitation (ChIP) - sequencing assay, we observed that MYCN strongly bound to promoter region nearing by MTHFD2 transcriptional start site (P = 3.7e-18). MTHFD2 is essential to embryonic development and has been shown to relate to the poor survival in breast cancer. It was also found that high MYCN and MTHFD2 expression correlated with poor survival (P < 2.4e-13) from our survival analysis in NBL patients. Based on data analyses above, we speculated that MYCN and MTHFD2 may play related role in NBL. To confirm this, we reduced and overexpressed MYCN expression, respectively, and observed MTHFD2 expression levels concomitantly changing in NBL cell lines. Moreover, promoter assay revealed that MTHFD2 is a direct transcriptional target of MYCN. To this end, we also conducted shRNA-mediated knockdown experiments in SK-N-DZ cells and overexpressed MTHFD2 in SK-N-AS cells. Interestingly, MTHFD2 promotes cell proliferation and colony formation of NBL cell lines. Together, our results suggest that MTHFD2 may play an important role in tumor aggressiveness as a potential therapeutic target for NBL.en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:25:28Z (GMT). No. of bitstreams: 1
ntu-104-R02b43016-1.pdf: 2856033 bytes, checksum: 5c2c11068560486d8e026791b9d22a05 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書 I
致謝 II
中文摘要 III
Abstract IV
Contents VI
List of Figures IX
List of Tables XI
Chapter 1 Introduction 1
1.1 Neuroblastoma 1
1.1.1 Stage of NBL 2
1.1.2 Therapies of NBL 3
1.2 MYCN 3
1.3 Gene expression analysis 4
1.4 ChIP-Seq (Chromatin Immunoprecipitation Sequencing) 6
1.5 MTHFD2 6
Chapter 2 Materials and Methods 8
2.1 Significance analysis of microarrays (SAM) 8
2.2 Chromatin immunoprecipitation sequencing 8
2.3 ChIP-Seq data analysis 9
2.4 Visualize and interpret ChIP-Seq results in IGV (Integrative Genomics Viewer) 9
2.5 Survival analysis 10
2.6 Tissue samples 10
2.7 Real-time PCR 11
2.8 Cell culture 11
2.9 Transient siRNA knockdown of MYCN 12
2.10 Overexpression of MYCN 12
2.11 Tet-off system 13
2.12 Cellular RNA extraction and reverse transcription 13
2.13 Western blot 14
2.14 Promoter region constructs 15
2.15 Luciferase reporter assay 15
2.16 Stable shRNA knockdown of MTHFD2 16
2.17 Plasmid construction 17
2.18 Establishment of stable cell lines expressing MTHFD2 17
2.19 MTS assay 18
2.20 Colony formation 18
Chapter 3 Results 19
3.1 Gene expression analyses reveal high expression of MTHFD2 in poor prognosis neuroblastoma. 19
3.2 Assessment of the Physical Interaction of MYCN and MTHFD2 20
3.3 Patients survival analysis of MTHFD2 expression in neuroblastoma. 21
3.4 Positive correlation of MYCN and MTHFD2 expression in neuroblastomas 21
3.5 MYCN regulates MTHFD2 expression. 22
3.6 MTHFD2 is a direct transcriptional target of MYCN 23
3.7 MTHFD2 shows oncogenic potential in neuroblastoma cells. 24
Chapter 4 Discussion and Conclusions 26
References 29
Figures 39
Tables 58
Appendix 76
dc.language.isoen
dc.title探討MTHFD2在神經母細胞瘤發展進程扮演的角色zh_TW
dc.titleStudy of the role of MTHFD2 in neuroblastoma progressionen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃宣誠(Hsuan-Cheng Huang),許文明(Wen-Ming Hsu),黃敏銓(Min-Chuan Huang),黃翠琴(Tsui-Chin Huang)
dc.subject.keyword神經母細胞瘤,染色質免疫沉澱測序,高通量基因表達數據庫,亞甲基四氫葉酸脫氫?2,細胞增生,zh_TW
dc.subject.keywordNeuroblastoma,MYCN,chromatin immunoprecipitation,MTHFD2,cell proliferation,en
dc.relation.page76
dc.rights.note有償授權
dc.date.accepted2015-08-06
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
2.79 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved