Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5349
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉如熹
dc.contributor.authorPo-Han Leeen
dc.contributor.author李柏漢zh_TW
dc.date.accessioned2021-05-15T17:56:33Z-
dc.date.available2016-07-08
dc.date.available2021-05-15T17:56:33Z-
dc.date.copyright2014-07-08
dc.date.issued2014
dc.date.submitted2014-06-26
dc.identifier.citation[1] Kometani, N.; Tsubonishi, M.; Fujita, T.; Asami, K.; Yonezawa, Y. “Preparation and optical absorption spectra of dye-coated Au, Ag, and Au/Ag colloidal nanoparticles in aqueous solutions and in alternate assemblies” Langmuir 2001, 17, 578.
[2] Yee, C. K.; Ulman, A.; Ruiz, J. D.; Parikh, A.; White, H.; Rafailovich, M. “Alkyl selenide- and alkyl thiolate-functionalized gold nanoparticles: Chain packing and bond nature” Langmuir 2003, 19, 9450.
[3] Kim, J. H.; Lee, T. R. “Thermo- and pH-responsive hydrogel-coated gold nanoparticles” Chem. Mater. 2004, 16, 3647.
[4] Strimbu, L.; Liu, J.; Kaifer, A. E. “Cyclodextrin-capped palladium nanoparticles as catalysts for the Suzuki reaction” Langmuir 2003, 19, 483.
[5] Jones, C. D.; Serpe, M. J.; Schroeder, L.; Lyon, L. A. “Microlens formation in microgel/gold colloid composite materials via photothermal patterning” J. Am. Chem. Soc. 2003, 125, 5292.
[6] Ivanisevic, A.; Reynolds, M. F.; Burstyn, J. N.; Ellis, A. B. “Photoluminescent properties of cadmium selenide in contact with solutions and films of metalloporphyrins: Nitric oxide sensing and evidence for the aversion of an analyte to a buried semiconductor-film interface” J. Am. Chem. Soc. 2000, 122, 3731.
[7] Gemeinhart, R. A.; Luo, D.; Saltzman, W. M. “Cellular fate of a modular DNA delivery system mediated by silica nanoparticles” Biotechnol. Progr. 2005, 21, 532.
[8] Ash, B. J.; Siegel, R. W.; Schadler, L. S. “Mechanical behavior of alumina/poly(methyl methacrylate) nanocomposites” Macromolecules 2004, 37, 1358.
[9] Chen, H. M.; Liu, R. S. “Architecture of Metallic Nanostructures: Synthesis Strategy and Specific Applications” J. Phys. Chem. C 2011, 115, 3513.
[10] Fleming, D. A.; Williams, M. E. “Size-controlled synthesis of gold nanoparticles via high-temperature reduction” Langmuir 2004, 20, 3021.
[11] de Dood, M. J. A.; Berkhout, B.; van Kats, C. M.; Polman, A.; van Blaaderen, A. “Acid-based synthesis of monodisperse rare-earth-doped colloidal SiO(2) spheres” Chem. Mater. 2002, 14, 2849.
[12] Murphy, C. J.; Jana, N. R. “Controlling the aspect ratio of inorganic nanorods and nanowires” Adv. Mater. 2002, 14, 80.
[13] Lee, K.; Seo, W. S.; Park, J. T. “Synthesis and optical properties of colloidal tungsten oxide nanorods” J. Am. Chem. Soc. 2003, 125, 3408.
[14] Sun, Y. G.; Gates, B.; Mayers, B.; Xia, Y. N. “Crystalline silver nanowires by soft solution processing” Nano. Lett. 2002, 2, 165.
[15] Nishiyama, N.; Tanaka, S.; Egashira, Y.; Oku, Y.; Ueyama, K. “Vapor-phase synthesis of mesoporous silica thin films” Chem. Mater. 2003, 15, 1006.
[16] Ma, R. Z.; Osada, M.; Hu, L. F.; Sasaki, T. “Self-Assembled Nanofilm of Monodisperse Cobalt Hydroxide Hexagonal Platelets: Topotactic Conversion into Oxide and Resistive Switching” Chem. Mater. 2010, 22, 6341.
[17] Li, Y.; Boone, E.; El-Sayed, M. A. “Size effects of PVP-Pd nanoparticles on the catalytic Suzuki reactions in aqueous solution” Langmuir 2002, 18, 4921.
[18] Chao, M. C.; Lin, H. P.; Sheu, H. S.; Mou, C. Y. “A study of morphology of mesoporous silica SBA-15” Stud. Surf. Sci. Catal. 2002, 141, 387.
[19] Gatteschi, D.; Sessoli, R. “Quantum tunneling of magnetization and related phenomena in molecular materials” Angew. Chem. Int. Edit. 2003, 42, 268.
[20] Miller, J. S.; Epstein, A. J. “Organic and Organometallic Molecular Magnetic-Materials - Designer Magnets” Angew. Chem. Int. Edit. 1994, 33, 385.
[21] Ferlay, S.; Mallah, T.; Ouahes, R.; Veillet, P.; Verdaguer, M. “A Room-Temperature Organometallic Magnet Based on Prussian Blue” Nature 1995, 378, 701.
[22] Ivanov, E. Y.; Suryanarayana, C.; Bryskin, B. D. “Synthesis of a nanocrystalline W-25 wt.% Re alloy by mechanical alloying” Mat. Sci. Eng. a-Struct. 1998, 251, 255.
[23] Peng, X. G.; Wickham, J.; Alivisatos, A. P. “Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: 'Focusing' of size distributions” J. Am. Chem. Soc. 1998, 120, 5343.
[24] Wood, R. W. “On the electrical resonance of metal particles light waves - Second communication.” Philos. Mag. 1902, 4, 425.
[25] Hessel, A.; Oliner, A. A. “A New Theory of Woods Anomalies on Optical Gratings” Appl. Optics 1965, 4, 1275.
[26] Kottmann, J. P.; Martin, O. J. F.; Smith, D. R.; Schultz, S. “Plasmon resonances of silver nanowires with a nonregular cross section” Phys. Rev. B 2001, 64.
[27] Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment” J. Phys. Chem. B 2003, 107, 668.
[28] Link, S.; El-Sayed, M. A. “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles” J. Phys. Chem. B 1999, 103, 4212.
[29] Dreaden, E. C.; Mackey, M. A.; Huang, X. H.; Kang, B.; El-Sayed, M. A. “Beating cancer in multiple ways using nanogold” Chem. Soc. Rev. 2011, 40, 3391.
[30] Cheng, L. C.; Huang, J. H.; Chen, H. M.; Lai, T. C.; Yang, K. Y.; Liu, R. S.; Hsiao, M.; Chen, C. H.; Her, L. J.; Tsai, D. P. “Seedless, silver-induced synthesis of star-shaped gold/silver bimetallic nanoparticles as high efficiency photothermal therapy reagent” J. Mater. Chem. 2012, 22, 2244.
[31] Miller, A. B.; Hoogstraten, B.; Staquet, M.; Winkler, A. “Reporting Results of Cancer-Treatment” Cancer 1981, 47, 207.
[32] Hamilton, A.; Hortobagyi, G. “Chemotherapy: What progress in the last 5 years?” J. Clin. Oncol. 2005, 23, 1760.
[33] Partridge, A. H.; Burstein, H. J.; Bluman, L. G.; Bunnell, C. A.; Winer, E. P. “Preferences and attitudes of patients with metastatic breast cancer regarding receiving results information following participation in a clinical trial.” Breast Cancer Res. Tr. 2001, 69, 307.
[34] Welch, A. J. “The Thermal Response of Laser Irradiated Tissue” IEEE J. Quantum Elect. 1984, 20, 1471.
[35] Jacques, S. L.; Prahl, S. A. “Modeling Optical and Thermal Distributions in Tissue during Laser Irradiation” Laser Surg. Med. 1987, 6, 494.
[36] Sturesson, C.; AnderssonEngels, S. “A mathematical model for predicting the temperature distribution in laser-induced hyperthermia. Experimental evaluation and applications” Phys. Med. Biol. 1995, 40, 2037.
[37] Greenwald, J.; Rosen, S.; Anderson, R. R.; Harrist, T.; Macfarland, F.; Noe, J.; Parrish, J. A. “Comparative Histological Studies of the Tunable Dye (at 577 Nm) Laser and Argon-Laser - the Specific Vascular Effects of the Dye-Laser” J. Invest. Dermatol. 1981, 77, 305.
[38] Anderson, R. R.; Parrish, J. A. “Selective Photothermolysis - Precise Microsurgery by Selective Absorption of Pulsed Radiation” Science 1983, 220, 524.
[39] Morelli, J. G.; Tan, O. T.; Garden, J.; Margolis, R.; Seki, Y.; Boll, J.; Carney, J. M.; Anderson, R. R.; Furumoto, H.; Parrish, J. A. “Tunable Dye-Laser (577 Nm) Treatment of Port Wine Stains” Laser Surg. Med. 1986, 6, 94.
[40] Chen, W. R.; Adams, R. L.; Heaton, S.; Dickey, D. T.; Bartels, K. E.; Nordquist, R. E. “Chromophore-Enhanced Laser-Tumor Tissue Photothermal Interaction Using an 808-Nm Diode-Laser” Cancer Lett. 1995, 88, 15.
[41] Chen, W. R.; Adams, R. L.; Bartels, K. E.; Nordquist, R. E. “Chromophore-Enhanced in-Vivo Tumor-Cell Destruction Using an 808-Nm Diode-Laser” Cancer Lett. 1995, 94, 125.
[42] Jori, G.; Schindl, L.; Schindl, A.; Polo, L. “Novel approaches towards a detailed control of the mechanism and efficiency of photosensitized processes in vivo” J. Photoch. Photobio. A 1996, 102, 101.
[43] Jori, G.; Spikes, J. D. “Photothermal Sensitizers - Possible Use in Tumor-Therapy” J. Photoch. Photobio. B 1990, 6, 93.
[44] Jain, P. K.; Huang, X. H.; El-Sayed, I. H.; El-Sayed, M. A. “Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine” Accounts Chem. Res. 2008, 41, 1578.
[45] Link, S.; Burda, C.; Nikoobakht, B.; El-Sayed, M. A. “How long does it take to melt a gold nanorod? A femtosecond pump-probe absorption spectroscopic study” Chem. Phys. Lett. 1999, 315, 12.
[46] Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A. “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine” J. Phys. Chem. B 2006, 110, 7238.
[47] Urbanska, K.; Romanowska-Dixon, B.; Matuszak, Z.; Oszajca, J.; Nowak-Sliwinska, P.; Stochel, G. “Indocyanine green as a prospective sensitizer for photodynamic therapy of melanomas” Acta. Biochim. Pol. 2002, 49, 387.
[48] Du, H.; Fuh, R. C. A.; Li, J. Z.; Corkan, L. A.; Lindsey, J. S. “PhotochemCAD: A computer-aided design and research tool in photochemistry” Photochem. Photobiol. 1998, 68, 141.
[49] Boisselier, E.; Astruc, D. “Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity” Chem. Soc. Rev. 2009, 38, 1759.
[50] El-Sayed, I. H.; Huang, X. H.; El-Sayed, M. A. “Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles” Cancer Lett. 2006, 239, 129.
[51] Huang, X. H.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods” J. Am. Chem. Soc. 2006, 128, 2115.
[52] Jaiswal, J. K.; Simon, S. M. “Potentials and pitfalls of fluorescent quantum dots for biological imaging” Trends Cell Biol. 2004, 14, 497.
[53] Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. “Semiconductor nanocrystals as fluorescent biological labels” Science 1998, 281, 2013.
[54] Wang, F.; Banerjee, D.; Liu, Y. S.; Chen, X. Y.; Liu, X. G. “Upconversion nanoparticles in biological labeling, imaging, and therapy” Analyst 2010, 135, 1839.
[55] van der Ende, B. M.; Aarts, L.; Meijerink, A. “Lanthanide ions as spectral converters for solar cells” Phys. Chem. Chem. Phys. 2009, 11, 11081.
[56] Wang, F.; Liu, X. G. “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals” Chem. Soc. Rev. 2009, 38, 976.
[57] Heer, S.; Kompe, K.; Gudel, H. U.; Haase, M. “Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals” Adv. Mater. 2004, 16, 2102.
[58] Wu, S. W.; Han, G.; Milliron, D. J.; Aloni, S.; Altoe, V.; Talapin, D. V.; Cohen, B. E.; Schuck, P. J. “Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals” P. Natl. Acad. Sci. U.S.A. 2009, 106, 10917.
[59] Yu, M. X.; Li, F. Y.; Chen, Z. G.; Hu, H.; Zhan, C.; Yang, H.; Huang, C. H. “Laser Scanning Up-Conversion Luminescence Microscopy for Imaging Cells Labeled with Rare-Earth Nanophosphors” Anal. Chem. 2009, 81, 930.
[60] Lim, S. F.; Riehn, R.; Ryu, W. S.; Khanarian, N.; Tung, C. K.; Tank, D.; Austin, R. H. “In vivo and scanning electron microscopy imaging of upconverting nanophosphors in Caenorhabditis elegans” Nano Lett. 2006, 6, 169.
[61] Xiong, L. Q.; Chen, Z. G.; Tian, Q. W.; Cao, T. Y.; Xu, C. J.; Li, F. Y. “High Contrast Upconversion Luminescence Targeted Imaging in Vivo Using Peptide-Labeled Nanophosphors” Anal. Chem. 2009, 81, 8687.
[62] Rantanen, T.; Jarvenpaa, M. L.; Vuojola, J.; Kuningas, K.; Soukka, T. “Fluorescence-quenching-based enzyme-activity assay by using photon upconversion” Angew. Chem. Int. Edit. 2008, 47, 3811.
[63] Idris, N. M.; Gnanasammandhan, M. K.; Zhang, J.; Ho, P. C.; Mahendran, R.; Zhang, Y. “In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers” Nat. Med. 2012, 18, 1580.
[64] 香港中文大學物理系網站(http://www.hkphy.org/atomic_world/tem/tem02_e.html).
[65] 陳力俊 “材料電子顯微鏡學”, 行政院國家科學委員會精密儀器發展中心, 民87.
[66] 高至均 “工業材料”, 工業材料研究所, 民87.
[67] 黃永勝 “科儀新知”, 國家研究院醫器科技研究中心, 民84.
[68] Shimazu公司網頁(http://www.ssi.shimadzu.com/products/product.cfm?product=uv1700).
[69] 倫敦南岸大學網頁(http://www.lsbu.ac.uk/water/vibrat.html).
[70] Olympuse公司網頁(http://www.olympusfluoview.com/theory/index.html).
[71] Wang, G. F.; Peng, Q.; Li, Y. D. “Lanthanide-Doped Nanocrystals: Synthesis, Optical-Magnetic Properties, and Applications” Accounts Chem. Res. 2011, 44, 322.
[72] Kramer, K. W.; Biner, D.; Frei, G.; Gudel, H. U.; Hehlen, M. P.; Luthi, S. R. “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors” Chem. Mater. 2004, 16, 1244.
[73] Wang, F.; Han, Y.; Lim, C. S.; Lu, Y. H.; Wang, J.; Xu, J.; Chen, H. Y.; Zhang, C.; Hong, M. H.; Liu, X. G. “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping”, Nature 2010, 463, 1061.
[74] Naccache, R.; Vetrone, F.; Mahalingam, V.; Cuccia, L. A.; Capobianco, J. A. “Controlled Synthesis and Water Dispersibility of Hexagonal Phase NaGdF4:Ho3+/Yb3+ Nanoparticles” Chem. Mater. 2009, 21, 717.
[75] Hu, H.; Yu, M. X.; Li, F. Y.; Chen, Z. G.; Gao, X.; Xiong, L. Q.; Huang, C. H. “Facile Epoxidation Strategy for Producing Amphiphilic Up-Converting Rare-Earth Nanophosphors as Biological Labels” Chem. Mater. 2008, 20, 7003.
[76] Cui, S. S.; Chen, H. Y.; Zhu, H. Y.; Tian, J. M.; Chi, X. M.; Qian, Z. Y.; Achilefu, S.; Gu, Y. Q. “Amphiphilic chitosan modified upconversion nanoparticles for in vivo photodynamic therapy induced by near-infrared light” J. Mater. Chem. 2012, 22, 4861.
[77] Saboktakin, M.; Ye, X. C.; Oh, S. J.; Hong, S. H.; Fafarman, A. T.; Chettiar, U. K.; Engheta, N.; Murray, C. B.; Kagan, C. R. “Metal-Enhanced Upconversion Luminescence Tunable through Metal Nanoparticle-Nanophosphor Separation” ACS Nano 2012, 6, 8758.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5349-
dc.description.abstract上轉換奈米粒子(UCNPs)為一可吸收多顆近紅外光激發光子並轉換為可見光波段光子之發光材料,此特性使其於生醫領域具高度應用潛力。目前上轉換奈米粒子相關之研究可分為直接利用其放光特性應用於生物標記,或者間接轉換釋放之光能於分子檢測及癌症治療之領域,於癌症治療領域主要為結合光敏劑進行光動力療法,利用活性氧物質以致使腫瘤癌細胞死亡。除光動力療法外,上轉換奈米粒子於光熱治療部分之研究仍具許多應用潛力。本研究所合成之多功能奈米複合材料為結合上轉換奈米粒子與不同形貌之金奈米粒子,利用金奈米粒子於特定入射光波長之具表面電漿共振之性質,並透過表面電漿共振所吸收之光能轉換為熱能,搭配具多重放光特性之上轉換奈米粒子提供光能來源以產生熱能致使細胞死亡。本研究利用厚度3 ± 0.5 nm之二氧化矽殼層包覆於大小為19 ± 1.1 nm之上轉換奈米粒子表面,並修飾胺基於以連接大小為3.6 ± 1.11 nm之球狀金奈米粒子(UCNP@SiO2-AuNPs)或徑長比為2.5之棒狀金奈米粒子(UCNP@SiO2-AuNRs),探討不同形貌之金奈米粒子於此複合材料之光熱轉換效率差異。於細胞毒性測試中,本研究所合成之奈米複合材料即便於250 μg/mL高濃度下,對於口腔癌細胞依然具相當低之毒性,可驗證其為低毒性之奈米材料。於光熱治療實驗中,UCNP@SiO2-AuNRs組別相較於UCNP@SiO2-AuNPs及其餘對照組,細胞死亡之數目與範圍皆明顯提升,顯示棒狀金奈米粒子具較強之光熱治療效果。本研究所製備之奈米複合材料,克服傳統金奈米粒子於生物標記之限制,並結合上轉換奈米粒子之螢光成像與金奈米粒子之光熱轉換特性,成功製備具多功能之奈米複合材料。zh_TW
dc.description.abstractUpconversion nanoparticles (UCNPs) refer to a highly potent nanomaterial for bioassay and bioimage because it can convert two or more low energy photons to a high energy photon. We demonstrate a nanocomposite consisting of UCNPs and gold nanoparticles as a multifunctional nanomaterial to apply in biomedical application. Noble metallic nanoparticles such as gold nanoparticle have a unique optical property because of the surface plasmon resonance (SPR). Furthermore NaYF4:Yb/Er upconversion nanoparticles emit the photoluminescence from green-to-red which can provide gold nanoparticles inducing photothermal effect. We further used silica coated UCNPs to functionalize amino groups on silica shell to combine 3.5 nm gold nanoparticles (UCNP@SiO2-AuNPs) or gold nanorods (UCNP@SiO2-AuNRs). The size of UCNPs and UCNP@SiO2 are define as 19 ± 1.1 nm and 26 ± 0.5 nm by HRTEM, respectively, and the silica shell is 3 ± 0.5 nm. According to the result of photoluminescence spectra, the intensity of UCNP@SiO2-AuNRs is lower than UCNP@SiO2-AuNPs and this confirm highly energy transfer from UCNP to gold nanorods. In vitro cytotoxicity study, this nanocomposites is nontoxicty to oral cancer cell through the MTT assay even the concentration of nanocomposites approaching 250 μg/mL. The photothermal effect of UCNP@SiO2-AuNRs is demonstrated by irradiating a 980 nm laser and staining with trypan blue, there is huge cell death compare to UCNP@SiO2-AuNPs. In summary, we successfully develop nanocomposites based on UCNPs which reveal obviously photothermal effect and cell imaging to overcome non-fluorescent material like gold nanorods as nanocarriers in biological application.en
dc.description.provenanceMade available in DSpace on 2021-05-15T17:56:33Z (GMT). No. of bitstreams: 1
ntu-103-R01223161-1.pdf: 5712933 bytes, checksum: d8c0ffbe7be08ec8e4ed288cff08ef24 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書 I
誌謝 II
摘要 III
Abstract IV
第一章 緒論 1
1.1 奈米材料之定義與特性 1
1.1.1 表面效應 3
1.1.2 小尺寸效應 3
1.1.2.1 磁力性質 3
1.1.2.2 光學性質 4
1.1.2.3 熱力學性質 4
1.1.3 量子尺寸效應 4
1.2 金奈米粒子之簡介 5
1.2.1 表面電漿共振之簡介 5
1.2.1.1 表面電漿傳遞(Surface plasmon propagation) 6
1.2.1.2 侷域性表面電漿共振(Localized surface plasmon resonance) 6
1.2.2 光熱治療(Photothermal therapy; PTT) 8
1.3 上轉換奈米粒子之簡介 10
1.3.1 上轉換奈米粒子之組成 12
1.3.1.1 主體材料(Host) 13
1.3.1.2 活化劑(Activator) 14
1.3.1.3 敏化劑(Sensitizer) 14
1.3.2 上轉換奈米粒子發光之機制 15
1.3.2.1 激發態吸收(Excited state absorption; ESA) 15
1.3.2.2 能量轉移上轉換(Energy transfer upconversion; ETU) 16
1.3.2.3 光子雪崩(Photon avalanche; PA) 16
1.4 文獻回顧 17
1.5 研究動機與目的 19
第二章 實驗方法與儀器原理 22
2.1 化學藥品 22
2.2 實驗步驟 23
2.2.1 上轉換奈米粒子之製備 23
2.2.2 球狀奈米金粒子之製備 24
2.2.3 棒狀金奈米粒子之製備 24
2.2.4 製備以甲殼素修飾之奈米複合材料 25
2.2.5 製備以二氧化矽修飾之奈米複合材料 26
2.2.6 細胞毒性之測試 26
2.2.7 光熱治療之測試 26
2.3 儀器原理 27
2.3.1 穿透式電子顯微鏡(Transmission electron microscope; TEM) 27
2.3.2 X光能量散布光譜(Energy Dispersive X-ray Spectrum; EDS) 29
2.3.3 X光粉末繞射(X-ray powder diffraction; XRD) 31
2.3.4 紫外光/可見光吸收光譜(UV/Vis absorption spectrum) 33
2.3.4.1 σ、π或n電子之吸收 34
2.3.4.2 d、f軌域電子之吸收 35
2.3.4.3 分子電荷轉移之吸收 35
2.3.5 光激發放光光譜(photoluminescence spectrum; PL) 36
2.3.5.1 振動鬆弛(Vibration relaxation) 37
2.3.5.2 內部轉移(Internal conversion) 37
2.3.5.3 螢光(Fluorescence) 37
2.3.5.4 系統跨躍(Intersystem crossing) 38
2.3.5.5 磷光(Phosphorescence) 38
2.3.5.6 外部轉移(External conversion) 38
2.3.6 紅外光振動光譜(Infrared spectrum; IR) 39
2.3.7 雷射掃描共軛聚焦顯微鏡(Laser scanning confocal microscopy) 40
第三章 結果與討論 43
3.1 上轉換奈米粒子之合成與鑑定 43
3.1.1 上轉換奈米粒子之XRD圖譜 44
3.1.2 上轉換奈米粒子之TEM影像 45
3.1.3 上轉換奈米粒子之PL光譜 46
3.2 金奈米粒子之合成與鑑定 47
3.2.1 球狀金奈米粒子之UV/Vis吸收光譜 47
3.2.2 棒狀金奈米粒子之成長機制 48
3.2.3 棒狀金奈米粒子之UV/Vis吸收光譜 49
3.2.4 棒狀金奈米粒子之TEM影像 51
3.3 奈米複合材料之合成與鑑定 51
3.3.1 以甲殼素修飾奈米複合材料之合成與鑑定 52
3.3.1.1 以甲殼素修飾奈米複合材料之TEM影像 54
3.3.1.2 以甲殼素修飾奈米複合材料之特性放光圖譜 55
3.3.2 以二氧化矽修飾奈米複合材料之合成與鑑定 57
3.3.2.1 以二氧化矽修飾奈米複合材料之TEM影像 58
3.3.2.2 以二氧化矽修飾奈米複合材料之PL光譜 61
3.4 奈米複合材料於生物應用之結果與討論 63
3.4.1 細胞毒性之測試 64
3.4.2 共軛聚焦顯微鏡之螢光成像 65
3.4.3 光熱治療於Cal 27細胞之測試 66
第四章 結論 69
參考文獻 70
dc.language.isozh-TW
dc.subject二氧化矽殼層zh_TW
dc.subject上轉換奈米粒子zh_TW
dc.subject光熱治療zh_TW
dc.subject金奈米粒子zh_TW
dc.subjectphotothermal therapyen
dc.subjectgold nanoparticlesen
dc.subjectupconversion nanoparticlesen
dc.subjectsilica shellen
dc.title具多功能之形貌控制金奈米粒子與上轉換奈米粒子複合材料zh_TW
dc.titleMultifunctional Nanocomposite of Upconversion Nanoparticle with Different Morphology of Gold Nanoparticlesen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳仲瑄,蔡定平,蕭宏昇,蔣孝澈
dc.subject.keyword上轉換奈米粒子,金奈米粒子,二氧化矽殼層,光熱治療,zh_TW
dc.subject.keywordupconversion nanoparticles,gold nanoparticles,silica shell,photothermal therapy,en
dc.relation.page77
dc.rights.note同意授權(全球公開)
dc.date.accepted2014-06-26
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf5.58 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved