請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53194
標題: | 基於自應性門檻分群和次全域對應的可靠性局部視差可能值估算 Adaptive Threshold Clustering and Semi-Global Matching for Reliable Local Disparity Candidate Generation |
作者: | Shih-Chan Huang 黃士展 |
指導教授: | 歐陽明(Ming Ouhyoung) |
關鍵字: | DAISY描述子,自應性門檻,半全域匹配,區域平面掃描, Daisy dense descriptors,adaptive threshold,semi-global matching,Local plane sweeps, |
出版年 : | 2015 |
學位: | 碩士 |
摘要: | 本論文提出一個利用自應性門檻來找出可信賴的區域平面,再以此些平面參數代入區域平面掃描,進而在相當短的時間內得到圖上幾個最佳的深度值。我們先用Harris角點和Daisy描述子來標記有足夠特徵的點,接下來用我們提出的自應性門檻來分組這些點群。我們還加了貪婪演算法以及以面為初始出發點的分群法則,這使得我們的演算法可以在幾個迭代內就達到收斂的結果。非自應性門檻的優點在於我們可以讓每個點群集自己去找出適合本身的點,而不受限傳統固定門檻的限制。最後套用了次全域的匹配方法,來找出有遮蔽的地方,最後可以對每個點提出次像素的精準度,使得最後結果極具參考價值。 We propose an algorithm that can provide disparity candidates of each pixel in the given input images in stereo matching problems. Most of the stereo matching algorithm can be separated in 2 parts: initial planes generation and optimization. We add some ideas trying to improve the former, and especially, we put emphasis on local plane generation. Our method estimates the planes from sparse feature matches, and we propose a strategy in collecting adjacent features with adaptive error threshold for plane fitting. The parameters of each plane is re-estimated whenever new feature points are incorporated according to the adaptive threshold setting. Furthermore, we apply the greedy aggregation: the plane with more features from the previous iteration is more probable for assigned features. We extract main planes fitting the scene structure without the burden of tuning the plane fitting error threshold. Finally we will apply semi-global matching to obtain the top five accurate candidates for each pixel. |
URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53194 |
全文授權: | 有償授權 |
顯示於系所單位: | 資訊工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 3.6 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。