請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53125完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李建國 | |
| dc.contributor.author | Shiun Chang | en |
| dc.contributor.author | 張洵 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:45:53Z | - |
| dc.date.available | 2020-09-24 | |
| dc.date.copyright | 2015-09-24 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-10 | |
| dc.identifier.citation | Adolfsson, J., Borge, O.J., Bryder, D., Theilgaard-Monch, K., Astrand-Grundstrom, I., Sitnicka, E., Sasaki, Y., and Jacobsen, S.E. (2001). Upregulation of Flt3 expression within the bone marrow Lin(-)Sca1(+)c-kit(+) stem cell compartment is accompanied by loss of self-renewal capacity. Immunity 15, 659-669.
Ambrosino, C., and Nebreda, A.R. (2001). Cell cycle regulation by p38 MAP kinases. Biology of the Cell 93, 47-51. Ardavin, C., Wu, L., Li, C.L., and Shortman, K. (1993). Thymic dendritic cells and T cells develop simultaneously in the thymus from a common precursor population. Nature 362, 761-763. Argiropoulos, B., and Humphries, R.K. (2007). Hox genes in hematopoiesis and leukemogenesis. Oncogene 26, 6766-6776. Baechler, E.C., Batliwalla, F.M., Karypis, G., Gaffney, P.M., Ortmann, W.A., Espe, K.J., Shark, K.B., Grande, W.J., Hughes, K.M., Kapur, V., et al. (2003). Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proceedings of the National Academy of Sciences of the United States of America 100, 2610-2615. Banchereau, J., and Steinman, R.M. (1998). Dendritic cells and the control of immunity. Nature 392, 245-252. Becker, A.M., Michael, D.G., Satpathy, A.T., Sciammas, R., Singh, H., and Bhattacharya, D. (2012). IRF-8 extinguishes neutrophil production and promotes dendritic cell lineage commitment in both myeloid and lymphoid mouse progenitors. Blood 119, 2003-2012. Bennett, L., Palucka, A.K., Arce, E., Cantrell, V., Borvak, J., Banchereau, J., and Pascual, V. (2003). Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. The Journal of experimental medicine 197, 711-723. Chen, Y.L., Chen, T.T., Pai, L.M., Wesoly, J., Bluyssen, H.A., and Lee, C.K. (2013). A type I IFN-Flt3 ligand axis augments plasmacytoid dendritic cell development from common lymphoid progenitors. The Journal of experimental medicine 210, 2515-2522. Chicha, L., Jarrossay, D., and Manz, M.G. (2004). Clonal type I interferon-producing and dendritic cell precursors are contained in both human lymphoid and myeloid progenitor populations. The Journal of experimental medicine 200, 1519-1524. Cisse, B., Caton, M.L., Lehner, M., Maeda, T., Scheu, S., Locksley, R., Holmberg, D., Zweier, C., den Hollander, N.S., Kant, S.G., et al. (2008). Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development. Cell 135, 37-48. Cuadrado, A., and Nebreda, A.R. (2010). Mechanisms and functions of p38 MAPK signalling. The Biochemical journal 429, 403-417. den Haan, J.M., Lehar, S.M., and Bevan, M.J. (2000). CD8(+) but not CD8(-) dendritic cells cross-prime cytotoxic T cells in vivo. The Journal of experimental medicine 192, 1685-1696. Desterke, C., Bilhou-Nabera, C., Guerton, B., Martinaud, C., Tonetti, C., Clay, D., Guglielmelli, P., Vannucchi, A., Bordessoule, D., Hasselbalch, H., et al. (2011). FLT3-mediated p38-MAPK activation participates in the control of megakaryopoiesis in primary myelofibrosis. Cancer research 71, 2901-2915. Diao, J., Winter, E., Cantin, C., Chen, W., Xu, L., Kelvin, D., Phillips, J., and Cattral, M.S. (2006). In situ replication of immediate dendritic cell (DC) precursors contributes to conventional DC homeostasis in lymphoid tissue. Journal of immunology (Baltimore, Md. : 1950) 176, 7196-7206. Edwards, A.D., Chaussabel, D., Tomlinson, S., Schulz, O., Sher, A., and Reis e Sousa, C. (2003). Relationships Among Murine CD11chigh Dendritic Cell Subsets as Revealed by Baseline Gene Expression Patterns. The Journal of Immunology 171, 47-60. Engelman, J.A., Luo, J., and Cantley, L.C. (2006). The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nature reviews. Genetics 7, 606-619. Esashi, E., Wang, Y.H., Perng, O., Qin, X.F., Liu, Y.J., and Watowich, S.S. (2008). The signal transducer STAT5 inhibits plasmacytoid dendritic cell development by suppressing transcription factor IRF8. Immunity 28, 509-520. Fogg, D.K., Sibon, C., Miled, C., Jung, S., Aucouturier, P., Littman, D.R., Cumano, A., and Geissmann, F. (2006). A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science (New York, N.Y.) 311, 83-87. Ghosh, H.S., Cisse, B., Bunin, A., Lewis, K.L., and Reizis, B. (2010). Continuous expression of the transcription factor e2-2 maintains the cell fate of mature plasmacytoid dendritic cells. Immunity 33, 905-916. Gilliet, M., Cao, W., and Liu, Y.J. (2008). Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nature reviews. Immunology 8, 594-606. Gilliland, D.G., and Griffin, J.D. (2002). The roles of FLT3 in hematopoiesis and leukemia. Blood 100, 1532-1542. Grajales-Reyes, G.E., Iwata, A., Albring, J., Wu, X., Tussiwand, R., Kc, W., Kretzer, N.M., Briseno, C.G., Durai, V., Bagadia, P., et al. (2015). Batf3 maintains autoactivation of Irf8 for commitment of a CD8alpha(+) conventional DC clonogenic progenitor. Nature immunology 16, 708-717. Hackstein, H., Taner, T., Zahorchak, A.F., Morelli, A.E., Logar, A.J., Gessner, A., and Thomson, A.W. (2003). Rapamycin inhibits IL-4--induced dendritic cell maturation in vitro and dendritic cell mobilization and function in vivo. Blood 101, 4457-4463. Huang, G., Wang, Y., Vogel, P., Kanneganti, T.D., Otsu, K., and Chi, H. (2012). Signaling via the kinase p38alpha programs dendritic cells to drive TH17 differentiation and autoimmune inflammation. Nature immunology 13, 152-161. Ivashkiv, L.B., and Donlin, L.T. (2014). Regulation of type I interferon responses. Nature reviews. Immunology 14, 36-49. Karsunky, H., Merad, M., Cozzio, A., Weissman, I.L., and Manz, M.G. (2003). Flt3 ligand regulates dendritic cell development from Flt3+ lymphoid and myeloid-committed progenitors to Flt3+ dendritic cells in vivo. The Journal of experimental medicine 198, 305-313. Kondo, M., Wagers, A.J., Manz, M.G., Prohaska, S.S., Scherer, D.C., Beilhack, G.F., Shizuru, J.A., and Weissman, I.L. (2003). Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annual review of immunology 21, 759-806. Laouar, Y., Welte, T., Fu, X.Y., and Flavell, R.A. (2003). STAT3 is required for Flt3L-dependent dendritic cell differentiation. Immunity 19, 903-912. Li, L., Jin, H., Xu, J., Shi, Y., and Wen, Z. (2011). Irf8 regulates macrophage versus neutrophil fate during zebrafish primitive myelopoiesis. Blood 117, 1359-1369. Liu, K., Victora, G.D., Schwickert, T.A., Guermonprez, P., Meredith, M.M., Yao, K., Chu, F.F., Randolph, G.J., Rudensky, A.Y., and Nussenzweig, M. (2009). In vivo analysis of dendritic cell development and homeostasis. Science (New York, N.Y.) 324, 392-397. Luche, H., Ardouin, L., Teo, P., See, P., Henri, S., Merad, M., Ginhoux, F., and Malissen, B. (2011). The earliest intrathymic precursors of CD8alpha(+) thymic dendritic cells correspond to myeloid-type double-negative 1c cells. European journal of immunology 41, 2165-2175. Manz, M.G., Traver, D., Miyamoto, T., Weissman, I.L., and Akashi, K. (2001). Dendritic cell potentials of early lymphoid and myeloid progenitors. Blood 97, 3333-3341. Maraskovsky, E., Brasel, K., Teepe, M., Roux, E.R., Lyman, S.D., Shortman, K., and McKenna, H.J. (1996). Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. The Journal of experimental medicine 184, 1953-1962. McKenna, H.J., Stocking, K.L., Miller, R.E., Brasel, K., Smedt, T.D., Maraskovsky, E., Maliszewski, C.R., Lynch, D.H., Smith, J., Pulendran, B., et al. (2000). Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood 95, 3489-3497. Merad, M., and Manz, M.G. (2009). Dendritic cell homeostasis. Blood 113, 3418-3427. Miller, G., Pillarisetty, V.G., Shah, A.B., Lahrs, S., and DeMatteo, R.P. (2003). Murine Flt3 ligand expands distinct dendritic cells with both tolerogenic and immunogenic properties. Journal of immunology (Baltimore, Md. : 1950) 170, 3554-3564. Naik, S.H., Metcalf, D., van Nieuwenhuijze, A., Wicks, I., Wu, L., O'Keeffe, M., and Shortman, K. (2006). Intrasplenic steady-state dendritic cell precursors that are distinct from monocytes. Nature immunology 7, 663-671. Naik, S.H., Sathe, P., Park, H.Y., Metcalf, D., Proietto, A.I., Dakic, A., Carotta, S., O'Keeffe, M., Bahlo, M., Papenfuss, A., et al. (2007). Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nature immunology 8, 1217-1226. Onai, N., Obata-Onai, A., Schmid, M.A., and Manz, M.G. (2007a). Flt3 in regulation of type I interferon-producing cell and dendritic cell development. Annals of the New York Academy of Sciences 1106, 253-261. Onai, N., Obata-Onai, A., Schmid, M.A., Ohteki, T., Jarrossay, D., and Manz, M.G. (2007b). Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow. Nature immunology 8, 1207-1216. Onai, N., Obata-Onai, A., Tussiwand, R., Lanzavecchia, A., and Manz, M.G. (2006). Activation of the Flt3 signal transduction cascade rescues and enhances type I interferon–producing and dendritic cell development. The Journal of experimental medicine 203, 227-238. Pineault, N., Helgason, C.D., Lawrence, H.J., and Humphries, R.K. (2002). Differential expression of Hox, Meis1, and Pbx1 genes in primitive cells throughout murine hematopoietic ontogeny. Experimental hematology 30, 49-57. Platanias, L.C. (2003). Map kinase signaling pathways and hematologic malignancies. Blood 101, 4667-4679. Preble, O.T., Black, R.J., Friedman, R.M., Klippel, J.H., and Vilcek, J. (1982). Systemic lupus erythematosus: presence in human serum of an unusual acid-labile leukocyte interferon. Science (New York, N.Y.) 216, 429-431. Pulendran, B., Banchereau, J., Burkeholder, S., Kraus, E., Guinet, E., Chalouni, C., Caron, D., Maliszewski, C., Davoust, J., Fay, J., and Palucka, K. (2000). Flt3-ligand and granulocyte colony-stimulating factor mobilize distinct human dendritic cell subsets in vivo. Journal of immunology (Baltimore, Md. : 1950) 165, 566-572. Redecke, V., Wu, R., Zhou, J., Finkelstein, D., Chaturvedi, V., High, A.A., and Hacker, H. (2013). Hematopoietic progenitor cell lines with myeloid and lymphoid potential. Nature methods 10, 795-803. Reizis, B., Bunin, A., Ghosh, H.S., Lewis, K.L., and Sisirak, V. (2011). Plasmacytoid dendritic cells: recent progress and open questions. Annual review of immunology 29, 163-183. Sathaliyawala, T., O'Gorman, W.E., Greter, M., Bogunovic, M., Konjufca, V., Hou, Z.E., Nolan, G.P., Miller, M.J., Merad, M., and Reizis, B. (2010). Mammalian target of rapamycin controls dendritic cell development downstream of Flt3 ligand signaling. Immunity 33, 597-606. Sathe, P., Vremec, D., Wu, L., Corcoran, L., and Shortman, K. (2013). Convergent differentiation: myeloid and lymphoid pathways to murine plasmacytoid dendritic cells. Blood 121, 11-19. Schiavoni, G., Mattei, F., Sestili, P., Borghi, P., Venditti, M., Morse, H.C., 3rd, Belardelli, F., and Gabriele, L. (2002). ICSBP is essential for the development of mouse type I interferon-producing cells and for the generation and activation of CD8alpha(+) dendritic cells. The Journal of experimental medicine 196, 1415-1425. Schmid, M.A., Kingston, D., Boddupalli, S., and Manz, M.G. (2010a). Instructive cytokine signals in dendritic cell lineage commitment. Immunol Rev 234, 32-44. Schmid, M.A., Kingston, D., Boddupalli, S., and Manz, M.G. (2010b). Instructive cytokine signals in dendritic cell lineage commitment. Immunological Reviews 234, 32-44. Tamura, T., Tailor, P., Yamaoka, K., Kong, H.J., Tsujimura, H., O'Shea, J.J., Singh, H., and Ozato, K. (2005). IFN regulatory factor-4 and -8 govern dendritic cell subset development and their functional diversity. Journal of immunology (Baltimore, Md. : 1950) 174, 2573-2581. Traver, D., Akashi, K., Manz, M., Merad, M., Miyamoto, T., Engleman, E.G., and Weissman, I.L. (2000). Development of CD8alpha-positive dendritic cells from a common myeloid progenitor. Science (New York, N.Y.) 290, 2152-2154. Tsujimura, H., Tamura, T., and Ozato, K. (2003). Cutting edge: IFN consensus sequence binding protein/IFN regulatory factor 8 drives the development of type I IFN-producing plasmacytoid dendritic cells. Journal of immunology (Baltimore, Md. : 1950) 170, 1131-1135. Tussiwand, R., Lee, W.L., Murphy, T.L., Mashayekhi, M., Kc, W., Albring, J.C., Satpathy, A.T., Rotondo, J.A., Edelson, B.T., Kretzer, N.M., et al. (2012). Compensatory dendritic cell development mediated by BATF-IRF interactions. Nature 490, 502-507. Vallin, H., Blomberg, S., Alm, G.V., Cederblad, B., and Ronnblom, L. (1999). Patients with systemic lupus erythematosus (SLE) have a circulating inducer of interferon-alpha (IFN-alpha) production acting on leucocytes resembling immature dendritic cells. Clinical and experimental immunology 115, 196-202. van de Laar, L., van den Bosch, A., Boonstra, A., Binda, R.S., Buitenhuis, M., Janssen, H.L., Coffer, P.J., and Woltman, A.M. (2012). PI3K-PKB hyperactivation augments human plasmacytoid dendritic cell development and function. Blood 120, 4982-4991. Vremec, D., Pooley, J., Hochrein, H., Wu, L., and Shortman, K. (2000). CD4 and CD8 Expression by Dendritic Cell Subtypes in Mouse Thymus and Spleen. The Journal of Immunology 164, 2978-2986. Wagner, E.F., and Nebreda, A.R. (2009). Signal integration by JNK and p38 MAPK pathways in cancer development. Nature reviews. Cancer 9, 537-549. Wang, G.G., Calvo, K.R., Pasillas, M.P., Sykes, D.B., Hacker, H., and Kamps, M.P. (2006). Quantitative production of macrophages or neutrophils ex vivo using conditional Hoxb8. Nature methods 3, 287-293. Waskow, C., Liu, K., Darrasse-Jeze, G., Guermonprez, P., Ginhoux, F., Merad, M., Shengelia, T., Yao, K., and Nussenzweig, M. (2008). The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nature immunology 9, 676-683. Zhang, S., Fukuda, S., Lee, Y., Hangoc, G., Cooper, S., Spolski, R., Leonard, W.J., and | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53125 | - |
| dc.description.abstract | Dendritic cells (DCs) are professional antigen-presenting cells that play an important role in controlling the immune responses. DCs can be roughly classified into two subsets, conventional DCs (cDCs) and plasmacytoid DCs (pDCs). DCs half-life is short and required continuously generated from their progenitors. DCs origin from both myeloid and lymphoid progenitors. In hematopoietic stage, the CMP in myloid lineage and CLP in lymphoid lineage are developmentaly equivalent. We first demostrated that the CLP have the highest pDC potential compared to other myelopid progenitors, including CMP and two subsets of CDPs. The development of DCs is highly dependent on Flt3 signaling. However, little is known about how Flt3 signaling involved in the decision of becoming cDCs or pDCs during development. In this study, we identified p38, a member of MAPK, are essential for pDCs development. Inhibitor targeting p38 show reduction of pDCs percentage and number but promote cDCs development from primary progenitors in vitro. Similar effects also were observed in iHSPC cell line with loss-of-function treatment, including inhibitors and knockdown approach, these treatments delay DC development. Moreover, the progeny cell number increased in the absent of p38. Together, we identified that p38 play a critical role in DC development and also DC subset determination that p38 act as positive regulator in pDC but negatively regulate cDC population | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:45:53Z (GMT). No. of bitstreams: 1 ntu-104-R02449007-1.pdf: 1816143 bytes, checksum: 37ac9852e59db68d63d642eec9989043 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 中文摘要………………………………………………………………………...…… i
Abstract……………………………………………………………………………… iii Table of contents……………………………………………………..………………..iv Chapter I Introduction ...……………………………………………..………...…....1 1.1 DC subsets...……………………………………………………………………….2 1.2 DC development…………………………………………………………………...3 1.3 Immortalized HSPC……………………………………………………………….4 1.4 Flt3 and FL……………………………………………………………………...…5 1.5 PI3k/Akt/mTOR signaling pathway……………………………………………….6 1.6 p38 MAPK signaling pathway…………………………………………………….7 1.7 Transcriptional control of DC development………………………………………8 1.8 Aim………………………………………………………………………………..9 Chapter II Materials and Methods…………………………………………………11 2.1 Mice………………………………………………………………………………12 2.2 Generation of FL…………………………………………………………………12 2.3 Antibodies and flow cytometry……………………………………………..........13 2.4 Analysis of progenitor and cell sorting…………………………………………..13 2.5 Preparation of Hoxb8 retro virus…………………………………………………14 2.6 Generation of iHSPC cell line…………………………………………………....14 2.7 In vitro DC development using primary progenitors…………………………….15 2.8 In vitro DC development using iHSPC cell line…………………………………15 2.9 Generation of knockdown cell lines from iHSPC………………………………..16 2.10 Immunoblotting………………………………………………………………....16 2.11 RT-qPCR………………………………………………………………………...17 Chapter III Results…………………………………………………….……………18 3.1 CLPs have higher pDC potentail than do myeloid progenitors……………….….19 3.2 PI3K/Akt/mTOR inhibitors impairs pDC development from progenitors in vitro…………………………………………………………………………………..20 3.3 SB203580, a p38 inhibitor, inhibits pDC development from progenitors in vitro…………………………………………………………………………………..21 3.4 P38i delay cDC development from iHSPC progenitor cell line………………….23 3.5 p38 knockdown reduces cDC population from iHSPCs…………………………25 Chapter IV Discussion……………………………………………………………...26 4.1 CLPs have highest pDC potential compared to other myeloid progenitors……...27 4.2 PI3K/Akt/mTORC1 and p38 MAPK pathways are essential for pDC development………………………………………………………………………….28 4.3 Applycation of p38 inhibitors in autoimmune diseases………………………….30 Figures…………………………………………………………..…………………...32 References…………………………………………………………………………...50 | |
| dc.language.iso | en | |
| dc.subject | 樹突細胞 | zh_TW |
| dc.subject | 發育 | zh_TW |
| dc.subject | Flt3 signaling | en |
| dc.subject | Dendritic cell development | en |
| dc.subject | p38 MAPK | en |
| dc.title | Flt3 受器下游訊息傳導分子影響樹突細胞發育的研究 | zh_TW |
| dc.title | Study of Flt3 downstream signal mediators controlling
Dendritic Cell subset determination | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林國儀,嚴仲陽 | |
| dc.subject.keyword | 樹突細胞,發育, | zh_TW |
| dc.subject.keyword | Flt3 signaling,Dendritic cell development,p38 MAPK, | en |
| dc.relation.page | 61 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-10 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 免疫學研究所 | zh_TW |
| 顯示於系所單位: | 免疫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 1.77 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
