請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53120完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 伍次寅(Tzu-yin Wu) | |
| dc.contributor.author | Wei-Yu Lin | en |
| dc.contributor.author | 林韋佑 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:45:35Z | - |
| dc.date.available | 2020-08-07 | |
| dc.date.copyright | 2020-08-07 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-05 | |
| dc.identifier.citation | [1] P. Webb, 'Body form, locomotion and foraging in aquatic vertebrates,' American Zoologist, vol. 24, no. 1, pp. 107-120, 1984. [2] P. W. Webb, 'The effect of size on the fast-start performance of rainbow trout Salmo gairdneri, and a consideration of piscivorous predator-prey interactions,' Journal of Experimental Biology, vol. 65, no. 1, pp. 157-177, 1976. [3] P. Webb, 'Acceleration performance of rainbow trout Salmo gairdneri and green sunfish Lepomis cyanellus,' Journal of experimental biology, vol. 63, no. 2, pp. 451-465, 1975. [4] J. Gray, 'Directional control of fish movement,' Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, vol. 113, no. 781, pp. 115-125, 1933. [5] P. Domenici and R. Blake, 'The kinematics and performance of fish fast-start swimming,' Journal of Experimental Biology, vol. 200, no. 8, pp. 1165-1178, 1997. [6] P. Domenici and R. W. Blake, 'The kinematics and performance of the escape response in the angelfish (Pterophyllum eimekei),' Journal of Experimental Biology, vol. 156, no. 1, pp. 187-205, 1991. [7] H. Frith and R. Blake, 'The mechanical power output and hydromechanical efficiency of northern pike (Esox lucius) fast-starts,' vol. 198, no. 9, pp. 1863-1873, 1995. [8] D. G. Harper and R. W. Blake, 'A critical analysis of the use of high-speed film to determine maximum accelerations of fish,' Journal of Experimental Biology, vol. 142, no. 1, pp. 465-471, 1989. [9] D. G. HARPER and R. W. BLAKE, 'Prey capture and the fast-start performance of northern pike Esox lucius,' Journal of experimental Biology, vol. 155, no. 1, pp. 175-192, 1991. [10] D. Weihs, 'The mechanism of rapid starting of slender fish,' Biorheology, vol. 10, no. 3, pp. 343-350, 1973. [11] D. Ellerby and J. Altringham, 'Spatial variation in fast muscle function of the rainbow trout Oncorhynchus mykiss during fast-starts and sprinting,' Journal of Experimental Biology, vol. 204, no. 13, pp. 2239-2250, 2001. [12] E. D. Tytell and G. V. Lauder, 'The C-start escape response of Polypterus senegalus: bilateral muscle activity and variation during stage 1 and 2,' Journal of Experimental Biology, vol. 205, no. 17, pp. 2591-2603, 2002. [13] J. M. Wakeling and I. A. Johnston, 'Body bending during fast-starts in fish can be explained in terms of muscle torque and hydrodynamic resistance,' Journal of experimental biology, vol. 202, no. 6, pp. 675-682, 1999. [14] J. W. Covell, M. Smith, D. G. Harper, and R. W. Blake, 'Skeletal muscle deformation in the lateral muscle of the intact rainbow trout Oncorhynchus mykiss during fast start maneuvers,' Journal of Experimental Biology, vol. 156, no. 1, pp. 453-466, 1991. [15] I. Johnston, J. L. van Leeuwen, M. L. Davies, and T. Beddow, 'How fish power predation fast-starts,' Journal of Experimental Biology, vol. 198, no. 9, pp. 1851-1861, 1995. [16] I. Spierts and J. Leeuwen, 'Kinematics and muscle dynamics of C-and S-starts of carp (Cyprinus carpio L.),' Journal of Experimental Biology, vol. 202, no. 4, pp. 393-406, 1999. [17] J. M. Wakeling and I. A. Johnston, 'Muscle power output limits fast-start performance in fish,' Journal of Experimental Biology, vol. 201, no. 10, pp. 1505-1526, 1998. [18] P. W. WEBB, D. SIMS, and W. W. SCHULTZ, 'The effects of an air/water surface on the fast-start performance of rainbow trout (Oncorhynchus mykiss),' Journal of experimental biology, vol. 155, no. 1, pp. 219-226, 1991. [19] S. D. ARCHER and I. A. JOHNSTON, 'Kinematics of labriform and subcarangiform swimming in the Antarctic fish Notothenia neglecta,' Journal of Experimental Biology, vol. 143, no. 1, pp. 195-210, 1989. [20] T. Johnson, A. Cullum, and A. Bennett, 'Partitioning the effects of temperature and kinematic viscosity on the C-start performance of adult fishes,' Journal of Experimental Biology, vol. 201, no. 13, pp. 2045-2051, 1998. [21] N. Danos and G. V. Lauder, 'Challenging zebrafish escape responses by increasing water viscosity,' Journal of Experimental Biology, vol. 215, no. 11, pp. 1854-1862, 2012. [22] P. Webb, 'Fast-start performance and body form in seven species of teleost fish,' Journal of experimental biology, vol. 74, no. 1, pp. 211-226, 1978. [23] B. Ahlborn, S. Chapman, R. Stafford, and R. Harper, 'Experimental simulation of the thrust phases of fast-start swimming of fish,' Journal of Experimental Biology, vol. 200, no. 17, pp. 2301-2312, 1997. [24] M. N. Watts, 'Emulating the fast-start swimming performance of the chain pickerel (Esox niger) using a mechanical fish design,' Massachusetts Institute of Technology, 2006. [25] B. P. Epps and A. H. Techet, 'Impulse generated during unsteady maneuvering of swimming fish,' Experiments in Fluids, vol. 43, no. 5, pp. 691-700, 2007. [26] E. D. Tytell and G. V. Lauder, 'Hydrodynamics of the escape response in bluegill sunfish, Lepomis macrochirus,' Journal of Experimental Biology, vol. 211, no. 21, pp. 3359-3369, 2008. [27] B. Niesterok and W. Hanke, 'Hydrodynamic patterns from fast-starts in teleost fish and their possible relevance to predator–prey interactions,' Journal of Comparative Physiology A, vol. 199, no. 2, pp. 139-149, 2013. [28] M. Lighthill, 'Note on the swimming of slender fish,' Journal of fluid Mechanics, vol. 9, no. 2, pp. 305-317, 1960. [29] D. Weihs, 'A hydrodynamical analysis of fish turning manoeuvres,' Proceedings of the Royal Society of London. Series B. Biological Sciencesvol. 182, no. 1066, pp. 59-72, 1972. [30] M. Chopra, 'Large amplitude lunate-tail theory of fish locomotion,' Journal of Fluid Mechanics, vol. 74, no. 1, pp. 161-182, 1976. [31] P. J. Czuwala, C. Blanchette, S. Varga, and H. Long, 'A Mechanical Model of the Rapid Body Flexures of Fast-starting Fish,' in INTERNATIONAL SYMPOSIUM ON UNMANNED UNTETHERED SUBMERSIBLE TECHNOLOGY, 1999, pp. 415-426: Citeseer. [32] I. Borazjani, F. Sotiropoulos, E. D. Tytell, and G. V. Lauder, 'Hydrodynamics of the bluegill sunfish C-start escape response: three-dimensional simulations and comparison with experimental data,' Journal of Experimental Biology, vol. 215, no. 4, pp. 671-684, 2012. [33] S. Kern and P. Koumoutsakos, 'Simulations of optimized anguilliform swimming,' Journal of Experimental Biology, vol. 209, no. 24, pp. 4841-4857, 2006. [34] W. Wang, R. Yin, D. Hao, and Y. Yan, 'Modeling and simulation of fish-like swimming in a straight-line swimming state using immersed boundary method,' Advances in Mechanical Engineering, vol. 6, p. 489683, 2014. [35] Y.-C. Su and T. Wu, 'Numerical Simulations of Fast-Start Motions of Fish,' Procedia Engineering, vol. 79, pp. 66-75, 2014. [36] C. S. Peskin, 'Flow patterns around heart valves: a numerical method,' Journal of computational physics, vol. 10, no. 2, pp. 252-271, 1972. [37] A. M. Roma, C. S. Peskin, and M. J. Berger, 'An adaptive version of the immersed boundary method,' Journal of computational physics, vol. 153, no. 2, pp. 509-534, 1999. [38] C. S. Peskin, 'The immersed boundary method,' Acta numerica, vol. 11, pp. 479-517, 2002. [39] M. Behr, A. Johnson, J. Kennedy, S. Mittal, and T. Tezduyar, 'Computation of incompressible flows with implicit finite element implementations on the Connection Machine,' Computer Methods in Applied Mechanics Engineering, vol. 108, no. 1-2, pp. 99-118, 1993. [40] K. Taira and T. Colonius, 'The immersed boundary method: a projection approach,' Journal of Computational Physics, vol. 225, no. 2, pp. 2118-2137, 2007. [41] S. W. Su, M. C. Lai, C. A. Lin, and fluids, 'An immersed boundary technique for simulating complex flows with rigid boundary,' Computers Fluids, vol. 36, no. 2, pp. 313-324, 2007. [42] S. J. Shin, W. X. Huang, and H. J. Sung, 'Assessment of regularized delta functions and feedback forcing schemes for an immersed boundary method,' International Journal for Numerical Methods in Fluids, vol. 58, no. 3, pp. 263-286, 2008. [43] X. Yang, X. Zhang, Z. Li, and G.-W. He, 'A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations,' Journal of Computational Physics, vol. 228, no. 20, pp. 7821-7836, 2009. [44] A. J. Chorin, 'Numerical solution of the Navier-Stokes equations,' Mathematics of computation, vol. 22, no. 104, pp. 745-762, 1968. [45] J. B. Perot, 'An analysis of the fractional step method,' Journal of Computational Physics, vol. 108, no. 1, pp. 51-58, 1993. [46] J. Suckale, J. A. Sethian, J. d. Yu, and L. T. Elkins‐Tanton, 'Crystals stirred up: 1. Direct numerical simulations of crystal settling in nondilute magmatic suspensions,' Journal of Geophysical Research: Planets, vol. 117, no. E8, 2012. [47] S. V. Apte, M. Martin, and N. A. Patankar, 'A numerical method for fully resolved simulation (FRS) of rigid particle–flow interactions in complex flows,' Journal of Computational Physics, vol. 228, no. 8, pp. 2712-2738, 2009. [48] R. Mittal, H. Dong, M. Bozkurttas, F. Najjar, A. Vargas, and A. Von Loebbecke, 'A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries,' Journal of computational physics, vol. 227, no. 10, pp. 4825-4852, 2008. [49] G. Liu, Y.-L. Yu, and B.-G. Tong, 'A Numerical Simulation of a Fishlike Body’s Self‐propelled C‐start,' in AIP conference proceedings, 2011, vol. 1376, no. 1, pp. 480-483: American Institute of Physics. [50] B. O. Swanson and A. C. Gibb, 'Kinematics of aquatic and terrestrial escape responses in mudskippers,' Journal of experimental biology, vol. 207, no. 23, pp. 4037-4044, 2004. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53120 | - |
| dc.description.abstract | 快速啟動(fast-start movement)是魚類非常重要且獨特的運動方式,依魚類身體變化的形狀可分為C型啟動和S型啟動。C型啟動是魚類遇到危險時進行脫逃的運動型態,而S型啟動則大多是魚類在捕食獵物時加速的動作。C型啟動是魚將身體彎曲成C的形狀,之後往反方向甩出,藉由與流體的反作用力而改變方向進行逃脫;至於S型啟動原理則是魚類將身體彎曲成S的形狀,進而產生往前的加速度。過去的文獻指出C型啟動的加速度及速度值皆大於S型啟動。本文以一簡單的魚身軀模型來進行C型啟動與S型啟動的模擬,並觀察魚類在進行快速啟動時周圍的流場會如何變化。為簡化分析,流場假設為二維不可壓縮黏性流場。本文使用有限體積數值法(Finite-Volume Method)來計算流場,而魚身軀與流體之間的作用力是應用沉浸邊界法(Immersed Boundary Method)來求解流場運動方程式(Navier-Stokes equations)得出。最後在計算出作用於魚身上的力和力矩後,可以運用牛頓運動定律來預測魚的行進速度及位移和行走距離。本研究探討了數種不同C 型啟動與S型啟動的魚身軀擺動模式,並比較了不同模式下所計算出的各項魚類運動數據及效率。 | zh_TW |
| dc.description.abstract | Fast-start motion is an important and unique swimming mode of fish. According to the curved shape of fish body, fast-start motion can be divided into two types: C-type and S-type. Fish usually use the C-type fast-start to escape from danger, and the S-type fast-start is used in capturing prey. In C-start mode, fish bends its body into C-shape, and then get accelerated towards a new direction by the recoiling beat of its tail. While in S-start mode fish bends its body into an S-shape undulating wave to propel itself in the forward direction. Some scientists found that the maximum acceleration and velocity in C-start mode are usually larger than the S-start mode. In this study, we construct the body movement of a fast-start fish from a simple 2-D model. For simplicity, the flow field generated by fish motion is assumed to be two dimensional. The force acting on the fish body is obtained by solving the Navier-Stokes equations with the Immersed Boundary Method. Once the resultant force and moment acting on the fish body are known, the movement of fish can be advanced by using Newton's second laws. This study considers several kinds of C-type and S-type fast-start modes. Relevant data regarding to fish movement under different fast-start modes are calculated and discussed. Performance efficiencies for different fast-start motions are also compared. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:45:35Z (GMT). No. of bitstreams: 1 U0001-0508202014020700.pdf: 3485887 bytes, checksum: d22e3e1aafd4d2706aca4307eed0cb61 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 國立台灣大學碩士學位論文口試委員會審定書 i 致謝 ii 摘要 iii Abstract iv 目錄 v 圖目錄 vii 表目錄 ix 第一章 導論 1 第二章 統御方程式及數值方法 5 2.1統御方程式及邊界條件 5 2.2無因次化 6 2.3數值方法 6 2.3.1 沉浸邊界法(Immersed Boundary Method) 6 2.3.2 投影法(Projection method) 10 2.3.3 有限體積法及錯位網格 14 2.3.4 QUICK法(Quadratic Upwind Interpolation for Convective Kinematics) 16 2.3.5 數值驗證 17 第三章 魚類快速啟動之身軀姿態變化模式及運動 20 3.1 魚類在快速啟動時身軀姿態變化之數學模型 20 3.1.1 魚類C型啟動之軀體中心線建構 20 3.1.2 魚類S行啟動之軀體中心線建構 22 3.1.3 魚類身體寬度之建構 23 3.1.4 快速啟動魚身姿態修正 25 3.2 魚受流體作用力之行進及旋轉運動 26 第四章 魚類S型啟動之模擬 32 4.1 數值計算之收斂性測試 33 4.2 結果與討論 34 第五章 魚類C型啟動之模擬 48 5.1 單純C型啟動模式之結果與討論 49 5.2 C型啟動加入S型之結果與討論 58 5.3 比較兩種C型快速啟動之差異 68 第六章 結論與未來展望 69 6.1 結論 69 6.2 未來展望 70 附錄 A 納維爾-斯托克斯方程式之離散 71 附錄 B 非均勻網格QUICK法係數推導 77 文獻參考 80 | |
| dc.language.iso | zh-TW | |
| dc.subject | C型啟動 | zh_TW |
| dc.subject | 魚類快速啟動 | zh_TW |
| dc.subject | S型啟動 | zh_TW |
| dc.subject | 沉浸邊界法 | zh_TW |
| dc.subject | S-start | en |
| dc.subject | Fast-start motion of fish | en |
| dc.subject | C-start | en |
| dc.subject | Immersed Boundary method | en |
| dc.title | 以沉浸邊界數值法模擬魚類快速啟動之運動 | zh_TW |
| dc.title | Simulations of Fast-Start Motions of Fish by Immersed Boundary Method | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 盧中仁(Chung-Jen Lu),蔡協澄(Hsieh-Chen Tsai) | |
| dc.subject.keyword | 魚類快速啟動,C型啟動,S型啟動,沉浸邊界法, | zh_TW |
| dc.subject.keyword | Fast-start motion of fish,C-start,S-start,Immersed Boundary method, | en |
| dc.relation.page | 83 | |
| dc.identifier.doi | 10.6342/NTU202002461 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-05 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0508202014020700.pdf 未授權公開取用 | 3.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
