請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53115完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝銘鈞(Ming-Jium Shieh) | |
| dc.contributor.author | Shih-En Lin | en |
| dc.contributor.author | 林詩恩 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:45:17Z | - |
| dc.date.available | 2015-08-12 | |
| dc.date.copyright | 2015-08-12 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-10 | |
| dc.identifier.citation | 1. Deshayes S, Cabral H, Ishii T, Miura Y, Kobayashi S, Yamashita T, Matsumoto A, Miyahara Y, Nishiyama N, Kataoka K. Phenylboronic acid-installed polymeric micelles for targeting sialylated epitopes in solid tumors. J Am Chem Soc. 2013 Oct 16;135(41):15501-7.
2. Xing R, Wang X, Zhang C, Zhang Y, Wang Q, Yang Z, Guo Z. Characterization and cellular uptake of platinum anticancer drugs encapsulated in apoferritin. J Inorg Biochem. 2009 Jul;103(7):1039-44. 3. Blazkova I, Nguyen HV, Dostalova S, Kopel P, Stanisavljevic M, Vaculovicova M, Stiborova M, Eckschlager T, Kizek R, Adam V. Apoferritin modified magnetic particles as Doxorubicin carriers for anticancer drug delivery. Int J Mol Sci. 2013 Jun 27;14(7):13391-402. 4. Zhen Z, Tang W, Chen H, Lin X, Todd T, Wang G, Cowger T, Chen X, Xie J. RGD-modified apoferritin nanoparticles for efficient drug delivery to tumors. ACS Nano. 2013 Jun 25;7(6):4830-7. 5. Gumulec J, Fojtu M, Raudenska M, Sztalmachova M, Skotakova A, Vlachova J, Skalickova S, Nejdl L, Kopel P, Knopfova L, Adam V, Kizek R, Stiborova M, Babula P, Masarik M. Modulation of induced cytotoxicity of doxorubicin by using apoferritin and liposomal cages. Int J Mol Sci. 2014 Dec 11;15(12):22960-77. 6. Calzolari A, Deaglio S, Maldi E, Cassoni P, Malavasi F, Testa U. TfR2 expression in human colon carcinomas. Blood Cells Mol Dis. 2009 Nov-Dec;43(3):243-9. 7. Makino A1, Harada H, Okada T, Kimura H, Amano H, Saji H, Hiraoka M, Kimura S. Effective encapsulation of a new cationic gadolinium chelate into apoferritin and its evaluation as an MRI contrast agent. Nanomedicine. 2011 Oct;7(5):638-46. 8. Cutrin JC, Crich SG, Burghelea D, Dastrù W, Aime S. Curcumin/Gd loaded apoferritin: a novel 'theranostic' agent to prevent hepatocellular damage in toxic induced acute hepatitis. Mol Pharm. 2013 May 6;10(5):2079-85. 9. Liu X, Wei W, Yuan Q, Zhang X, Li N, Du Y, Ma G, Yan C, Ma D. Apoferritin-CeO2 nano-truffle that has excellent artificial redox enzyme activity. Chem Commun (Camb). 2012 Mar 28;48(26):3155-7. 10. Liang M, Fan K, Zhou M, Duan D, Zheng J, Yang D, Feng J, Yan X. H-ferritin-nanocaged doxorubicin nanoparticles specifically target and kill tumors with a single-dose injection. Proc Natl Acad Sci U S A. 2014 Oct 14;111(41):14900-5. 11. Bellini M, Mazzucchelli S, Galbiati E, Sommaruga S, Fiandra L, Truffi M, Rizzuto MA, Colombo M, Tortora P, Corsi F, Prosperi D. Protein nanocages for self-triggered nuclear delivery of DNA-targeted chemotherapeutics in Cancer Cells. J Control Release. 2014 Dec 28;196:184-96. 12. Dixit S, Novak T, Miller K, Zhu Y, Kenney ME, Broome AM. Transferrin receptor-targeted theranostic gold nanoparticles for photosensitizer delivery in brain tumors. Nanoscale. 2015 Feb 7;7(5):1782-90. 13. Mahon, E., et al., Designing the nanoparticle-biomolecule interface for 'targeting and therapeutic delivery'. J Control Release, 2012. 161(2): p. 164-74. 14. Schrama, D., R.A. Reisfeld, and J.C. Becker, Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov, 2006. 5(2): p. 147-59. 15. Jain, K.K., Advances in the field of nanooncology. BMC Med, 2010. 8: p. 83. 16. Nemunaitis, J.M. and J. Nemunaitis, Potential of Advexin: a p53 gene-replacement therapy in Li-Fraumeni syndrome. Future Oncol, 2008. 4(6): p. 759-68. 17. Wang, K., et al.,Oxaliplatin-incorporated micelles eliminate both cancer stem-like and bulk cell populations in colorectal cancer. Int J Nanomedicine, 2011. 6: p. 3207-18. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53115 | - |
| dc.description.abstract | 目前臨床上對於大腸直腸癌的治療,除了手術以外輔助性的化學治療能顯著降低接受治療的病人大腸直腸癌的復發機率,鉑類藥物也是目前臨床上常用的化療藥,鉑類藥物的作用機制是阻斷DNA的合成,在第一代的cisplatin雖然有好的治療效果但因為其副作用造成病人的不適,因此研究者們發展出目前臨床在用的第三代鉑類化療藥物oxaliplatin,雖然oxaliplatin的副作用沒有cisplatin那麼高,但還是會產生腎毒性及神經毒性的副作用影響病人的生活品質,所以大家開始結合不同的藥物載體,希望透過搭配奈米載體可以有效提升其療效並且降低副作用,DACH-Pt為oxaliplatin的作用形式,因此在我的實驗中選擇DACH-Pt做為要搭載的藥物。
蛋白載體是一種新型藥物載體,在我的研究中我選擇脫鐵蛋白(Apo),它是由24個亞基組成的球狀鐵蛋白。脫鐵蛋白會在中性環境下自我形成中空納米載體,其具有12奈米的外徑和8奈米內徑,這能擁有更長的循環半衰期和更好的腫瘤累積率,它是原本就存在於動物體中的蛋白質,所以該載體具有高的生物相容性且是生物可降解的。最近的研究中發現,脫鐵蛋白通過與轉鐵蛋白受體一(TfR1,CD71)相互作用連結到人類細胞上,在一般情況下,為了維持細胞內的鐵濃度的平衡,細胞對於轉鐵蛋白受體一會有一程度的表現量。轉鐵蛋白受體一高度表達於人大腸癌細胞是眾所皆知的事情,長期以來轉鐵蛋白受體一一直被視為標靶指標作為腫瘤的診斷與治療。脫鐵蛋白在酸性(pH值= 2)的環境下會崩解,且此過程是可逆的。當pH值回到中性,脫鐵蛋白將重新回復成一個空心的載體形式,並且幾乎不會有任何的改變,因此,我們可以利用這種特性來有效率地將藥包覆。 | zh_TW |
| dc.description.abstract | Currently clinical treatment for colorectal cancer, in addition to surgical, adjuvant chemotherapy can significantly reduce the chances of recurrence of colorectal cancer patients. Platinum drugs mechanism of action is to block DNA synthesis, the first generation of cisplatin although have good treatment, but because of its side effects induce patient discomfort, so researchers have developed current clinical use of third generation platinum drugs oxaliplatin (Oxa). Although oxaliplatin side effects compared to cisplatin is not so high, but the side effects of nephrotoxicity and neurotoxicity affect the patient's quality of life, so we began to combine different pharmaceutical carriers, hope with nanocarrier can enhance the efficacy and reduce side effects. Dichloro(1,2-diamino-cyclohexane)platinum(II) (DACH - Pt) is oxaliplatin active form, so in this study, we use the DACH - Pt as carried drugs.
Protein carrier is a novel drug carrier, in my study I choose apoferritin (Apo), is a spherical iron storage protein composed of 24 subunits. Apo protein self-assembles naturally into a hollow nanocage with an outer diameter of 12 nm and an interior cavity 8 nm in diameter, this may lead to a longer circulation half-life and a better tumor accumulation rate, and it is a protein present in animal body, so the carrier has a high biocompatibility and biodegradable. Recently, it was reported that apoferritin binds to human cells via interacting with the transferrin receptor 1 (TfR1, CD71), and under normal circumstances the cells in order to maintain the balance of intracellular iron concentration so regard to a certain degree of expression TFR1. It is well known that TfR1 is highly expressed on human colorectal cancer cells and has long been used as a targeting marker for tumor diagnosis and therapy. The Apo nanocages can be collapse in an acidic environment (pH = 2) into subunits, and the process is reversible. When the pH is turned back to neutral, the Apo subunits will be reconstituted into a hallow structure, and almost in an intact appearance, so we can use this characteristic to achieve effectively loading into the cavity, such as pH dependent disassembly and reassembly can be exercise of construct Apo. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:45:17Z (GMT). No. of bitstreams: 1 ntu-104-R02548046-1.pdf: 1472945 bytes, checksum: 6f1599f583f915cbacb5a728d078f289 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | CONTENTS 6
LIST OF SCHEMES 8 LIST OF TABLES 9 LIST OF FIGURES 10 Chapter 1 Introduction 12 1.1 Materials and Methods 12 1.2 Apoferritin 13 1.3 Transferrin receptor 1 (TfR1) 14 1.4 Characterization of apoferritin 14 1.5 Aim 15 Chapter 2 Materials and Methods 16 2.1 Materials 16 2.2 Encapsulation of DACH - Pt into Apoferritin 17 2.3 Characterization of Apo(DACH - Pt) 18 2.4 Stability of Apo(DACH - Pt) 18 2.5 Drug release profile of Apo(DACH - Pt) 19 2.6 Cell culture 19 2.7 Expression of TfR1 cells in colorectal cancer cells and normal cells 20 2.8 Western blotting 21 2.9 Immunofluorescence 21 2.10 Binding affinity of TfR1 probe targeted nanoparticles 22 2.11 Cellular uptake 23 2.12 In vitro cytotoxicity 24 2.13 In vivo, Growth inhibition studies of tumors 24 Chapter 3 Results 26 3.1 Encapsulation of DACH - Pt into Apoferritin 26 3.2 Characterization of Apo(DACH - Pt) 27 3.3 Stability of Apo(DACH - Pt) 28 3.4 Drug release profile of Apo(DACH - Pt) 28 3.5 Expression of TfR1 cells in colorectal cancer cells and normal cells 29 3.6 Western blotting 29 3.7 Immunofluorescence 29 3.8 Binding affinity of TfR1 probe targeted nanoparticles 30 3.9 Cellular uptake 30 3.10 In vitro cytotoxicity 31 3.11 In vivo, Growth inhibition studies of tumors 33 Chapter 4 Conclusions and Discussions 34 4.1 Conclusions 34 4.2 Discussions 34 REFERENCE 36 LIST OF SCHEMES Scheme1. The aim of the experiment 38 LIST OF TABLES Table 1. Characterization of Apo(DACH - Pt) 39 Table 2. Zeta potential of apoferritin and Apo(DACH - Pt) 39 Table 3. IC50 of TfR1+/TfR1- HT-29 treat with Apo(DACH - Pt), DACH - Pt and oxaliplatin 39 LIST OF FIGURES Figure 1. Size distribution by DLS (a)Apoferitin (b)Apo(DACH - Pt). 40 Figure 2. Transmission electron micrograph images. (a)Apoferitin (b)Apo(DACH - Pt). 41 Figure 3. Stability of Apo(DACH - Pt) (a) PDI of Apo(DACH - Pt) (b)size of Apo(DACH - Pt). 42 Figure 4. Drug release profiles of Apo(DACH - Pt) in different pH values PBS(1x) at 37°C. 43 Figure 5. Expression of TfR1 cells in colorectal cancer cells and normal cells by flow cytometry. 44 Figure 6. Expression of TfR1 cells in colorectal cancer cells and normal cells by western blotting. 45 Figure 7. Expression of TfR1 cells in TfR1+/TfR1- HT-29 by flow cytometry. 45 Figure 8. Expression of TfR1 cells in TfR1+/TfR1- HT-29 by immunofluorescence. 46 Figure 9. Absorption and fluorescence of Apo(DACH - Pt). 47 Figure 10. Binding test of TfR1+/TfR1- Ht-29 with Apo(DACH - Pt) in(a)30 min (b)60 min in 4°C 48 Figure 11. Cellular uptake of TfR1+/TfR1- HT-29 treat with Apo(DACH - Pt), DACH - Pt and oxaliplatin. 49 Figure 12. Cytotoxicity of apoferritin with (a) fibroblast and (b)HT-29. 50 Figure 13. Cytotoxicity of DACH - Pt and oxaliplatin with TfR1+/TfR1-HT-29. 51 Figure 14. Cytotoxicity of Apo(DACH - Pt) with TfR1+/TfR1- HT-29. 52 Figure 15. Recurrence inhibition studies of xenograft TfR1+/TfR1- HT-29 tumor. 52 Figure 16. Body weight of mice. 52 | |
| dc.language.iso | en | |
| dc.subject | 脫鐵蛋白 | zh_TW |
| dc.subject | 人類大腸直腸癌 | zh_TW |
| dc.subject | Apoferritin | en |
| dc.subject | Human colocn cancer | en |
| dc.title | 新型標靶性奈米蛋白質載體搭載鉑類化療藥物應用於人類大腸直腸癌之應用 | zh_TW |
| dc.title | Encapsulation of Platinum Anticancer Drug into Protein Nanocages as a Novel Nanomedicine for Targeted Delivery in Human Colon Cancer | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 駱俊良,林文澧 | |
| dc.subject.keyword | 脫鐵蛋白,人類大腸直腸癌, | zh_TW |
| dc.subject.keyword | Apoferritin,Human colocn cancer, | en |
| dc.relation.page | 54 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-10 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 1.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
