請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53109完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭茂坤(Mao-Kuen Kuo) | |
| dc.contributor.author | Yu-Chia Liu | en |
| dc.contributor.author | 劉宇嘉 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:44:56Z | - |
| dc.date.available | 2025-08-12 | |
| dc.date.copyright | 2020-08-21 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-13 | |
| dc.identifier.citation | [1] S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354(6348), 56-8, 1991. [2] E. T. Thostenson, Z. Ren, T. W. Chou, and Technology, “Advances in the science and technology of carbon nanotubes and their composites: a review,” Compos. Sci. Technol. 61(13), 1899-912, 2001. [3] X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115-20, 2006. [4] A. Micsonai, F. Wien, L. Kernya, Y. H. Lee, Y. Goto, M. Refregiers, and J. Kardos, “Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy,” Proc. Natl. Acad. Sci. USA 112(24), E3095-103, 2015. [5] S. J. Park, T. A. Taton, and C. A. Mirkin, “Array-based electrical detection of DNA with nanoparticle probes,” Science 295(5559), 1503-6, 2002. [6] S. Y. Park, A. K. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNA-programmable nanoparticle crystallization,” Nature 451(7178), 553-6, 2008. [7] M. Sarikaya, C. Tamerler, A. K. Y. Jen, K. Schulten, and F. Baneyx, “Molecular biomimetics: nanotechnology through biology,” Nat. Mater. 2(9), 577-85, 2003. [8] J. M. Slocik, A. O. Govorov, and R. R. Naik, “Plasmonic circular dichroism of peptide-functionalized gold nanoparticles.” Nano Lett. 11(2), 701-5, 2011. [9] R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. (abingdon) 4(21), 396-402, 1902. [10] U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves),” J. Opt. Soc. Am. A 31(3), 213-22, 1941. [11] R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106(5), 874, 1957. [12] E. Betzig, and J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257(5067), 189-95, 1992. [13] C. Girard, and A. Dereux, “Near-field optics theories,” Rep. Prog. Phys. 59(5), 657, 1996. [14] S. K. Ghosh, and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107(11), 4797-862, 2007. [15] B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuator A Phys. 4 299-304, 1983. [16] H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357, 1999. [17] E. Hutter, and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685-706, 2004. [18] K. M. Mayer, and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828-57, 2011. [19] A. Ashkin, “Trapping of atoms by resonance radiation pressure.” Phys. Rev. Lett. 40(12), 729, 1978. [20] A. Ashkin, J. M. Dziedzic, J. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288-90, 1986. [21] M. Wang, J. Dong, C. Zhou, H. Xie, W. Ni, S. Wang, H. Jin, and Q. Wang, “Reconfigurable plasmonic diastereomers assembled by DNA origami,” ACS Nano 13(12), 13702-8, 2019. [22] W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3, 1934, 2013. [23] L. Y. Wang, K. W. Smith, S. Dominguez-Medina, N. Moody, J. M. Olson, H. Zhang, W. S. Chang, N. Kotov, and S. Link, “Circular differential scattering of single chiral self-assembled gold nanorod dimers,” ACS Photonics 2(11), 1602-10, 2015. [24] M. L. Nesterov, X. Yin, M. SchäFerling, H. Giessen, and T. Weiss, “The role of plasmon-generated near fields for enhanced circular dichroism spectroscopy,” ACS Photonics 3(4), 578-83, 2016. [25] J. M. Slocik, A. O. Govorov, and R. R. Naik, “Plasmonic circular dichroism of peptide-functionalized gold nanoparticles,” Nano Lett. 11(2), 701-5, 2011. [26] A. Grigorenko, N. Roberts, M. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365-70, 2008. [27] K. Y. Chen, A. T. Lee, C. C. Hung, J. S. Huang, and Y. T. Yang, “Transport and trapping in two-dimensional nanoscale plasmonic optical lattice,” Nano Lett. 13(9), 4118-22, 2013. [28] J. Kypr, I. Kejnovska, D. Renciuk, and M. Vorlickova, “Circular dichroism and conformational polymorphism of DNA,” Nucleic Acids Res. 37(6), 1713-25, 2009. [29] A. Kuzyk, Y. Yang, X. Duan, S. Stoll, A. O. Govorov, H. Sugiyama, M. Endo, and N. Liu, “A light-driven three-dimensional plasmonic nanosystem that translates molecular motion into reversible chiroptical function,” Nat. Commun. 7, 10591, 2016. [30] A. Kuzyk, R. Schreiber, H. Zhang, A. O. Govorov, T. Liedl, and N. Liu, “Reconfigurable 3D plasmonic metamolecules,” Nat. Mater. 13(9), 862-6, 2014. [31] U. Levy, and Y. Silberberg, “Weakly diverging to tightly focused Gaussian beams: a single set of analytic expressions,” J. Opt. Soc. Am. A 33(10), 1999-2009, 2016. [32] J. J. Funke, P. Ketterer, C. Lieleg, S. Schunter, P. Korber, H. Dietz, “Uncovering the forces between nucleosomes using DNA origami.” J. Phys. Chem. C, 123, 7347-55, 2019 [33] Y. He, K. Lawrence, W. Ingram, and Y. Zhao, “Circular dichroism based refractive index sensing using chiral metamaterials.” Chem. Commun, 52(10), 2047-50, 2016 [34] G. Klös, M. Miola, and D. S. Sutherland, “Increased refractive index sensitivity by circular dichroism sensing through reduced substrate effect,” J. Phys. Chem. C, 123(12), 7347-55, 2019. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53109 | - |
| dc.description.abstract | 本論文研究分為兩部分:第一部分研究奈米金球二維陣列受高斯光束照射後,對聚苯乙烯珠的光力捕捉行為,第二部分研究金奈米桿二聚體受圓偏振光照射產生的光力矩及其自組裝行為,並分析其圓偏振二色性(circular dichroism, CD)。 第一部分金奈米球二聚體陣列抓取聚苯乙烯珠主要的抓取行為大致分為向光側的非接觸模態,與背光側的接觸模態。在向光側的部分,分別在金奈米陣列遠場與近場各產生一個非接觸模態之懸浮靜滯點,遠場的靜滯點始終被光軸控制,金奈米陣列產生的散射對其影響較小;近場的靜滯點會受到較強金奈米陣列散射場的影響,當光軸與金奈米陣列相互移動時,靜滯點會在一定區域內做快速移動像是跳躍的感覺;而在背光側的抓取模態會隨著奈金奈米陣列與光軸的相對位置而改變,當其中一組金球結構在較靠近光軸時,聚苯乙烯珠會被吸引至結構形成接觸模態,也就是說可以透過金球結構穩定的操控被抓取粒子,但當光軸下方的金球結構皆較遠離光軸時,抓取聚苯乙烯珠的行為會轉換成非接觸模態且漂浮在光軸附近。 第二部分研究金奈米桿二聚體受到圓偏振光照射後,產生的光力矩可輔助DNA摺紙技術,操控製作出具有不同角度的金桿二聚體結構,分析其光學手徵性(chirality)。並探討這種二聚體結構的圓偏振二色性(CD)光譜圖隨環境折射率改變的位移變化,分析結果顯示兩金奈米桿角度在40至60度,且當金桿之細長比越大時,CD光譜圖會有明顯的波峰,且對感測環境折射率有更加良好的靈敏度。未來可應用於感測環境折射率變化;藉以量測特定分子的濃度。 | zh_TW |
| dc.description.abstract | This thesis is divided into two parts: the first part studies the optical trapping of a 2D gold nano-array on a freestanding polystyrene bead, and the second part the self-assembled gold nanorod (GNR) dimer induced by a circularly polarized light and its optical property of circular dichroism (CD). The multiple multipole method is used for the simulation. In the first part, the contact and noncontact modes of optical trapping on a polystyrene bead by 2D nano-array are studied. For the front-side configuration, the polystyrene bead is trapped and float at two stagnation points of the noncontact mode by the nano-array as the system is irradiated by a Gaussian beam. A stagnation point is at the far-field close to the optical axis of Gaussian beam, and the other one in near-field of the gold nano-array. When the gold nano-array moves with respect to the optical axis, the second stagnation point will follow and then jump back; the motion of polystyrene bead performs a step-like one. For the back-side configuration, the major trapping mode is the contact one; the polystyrene bead is attracted on a specific gold nano-dimer. However, when the gold nano-dimer moves away from the optical axis, the trapped polystyrene bead will leave the dimer and jump back to float near the optical axis; the mode changes to noncontact one. If the array continues to move, the bead will be trapped to attach another dimer again. In the second part, the optical torque upon a GNR dimer irradiated by a circularly polarized light is studied. This optical torque can assist the DNA origami technique to manipulate and tune the angle between two fingers-crossed GNRs. The chirality of the GNR dimer with different angle is analyzed. We investigate the relationship of the circular dichroism (CD) spectrum of this dimer with the environmental refractive index by measuring the spectrum shift. The results show that when the angle of the GNRs is between 40 and 60 degrees and the aspect ratio of GNR is larger the CD spectrum has a better sensitivity for sensing the change of refractive index. In the future, it has a potential of detecting the change in the effective refractive index of the environment to measure the concentration of a specific molecule. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:44:56Z (GMT). No. of bitstreams: 1 U0001-0508202014162300.pdf: 11150438 bytes, checksum: b17dfa1140fca7864276a617b07a81e7 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 致謝 i 摘要 ii Abstract iii 目錄 v 圖目錄 vi 第1章 緒論 1 1.1 前言 1 1.2 動機與目的 3 1.3 文獻回顧 4 第2章 電磁理論與數值方法 11 2.1 高斯光束(Gaussian beam) 11 2.2 Maxwell 應力張量 13 2.3 手徵性與圓偏振二色性 14 第3章 數值模擬結果分析與討論 15 3.1 奈米金球二聚體對聚苯乙烯珠抓取行為分析 15 3.1.1 單組金球二聚體 18 3.1.2 二維金球二聚體陣列 27 3.2 光誘導金奈米桿二聚體自組裝及應用 43 第4章 結論與未來展望 59 4.1 結論 59 4.2 未來展望 61 參考文獻 62 附錄 MMP擺點 65 | |
| dc.language.iso | zh-TW | |
| dc.subject | 手徵性 | zh_TW |
| dc.subject | 高斯光束 | zh_TW |
| dc.subject | 光力 | zh_TW |
| dc.subject | 光力矩 | zh_TW |
| dc.subject | 接觸模態 | zh_TW |
| dc.subject | 非接觸模態 | zh_TW |
| dc.subject | 自組裝 | zh_TW |
| dc.subject | 圓偏振極化 | zh_TW |
| dc.subject | 圓偏振二色性 | zh_TW |
| dc.subject | circular dichroism | en |
| dc.subject | Gaussian beam | en |
| dc.subject | contact mode | en |
| dc.subject | noncontact mode | en |
| dc.subject | self-assembly | en |
| dc.subject | circularly polarized | en |
| dc.subject | optical force | en |
| dc.subject | chirality | en |
| dc.subject | optical torque | en |
| dc.title | 金奈米陣列對聚苯乙烯珠之光力捕捉及金奈米桿二聚體之光誘導自組裝 | zh_TW |
| dc.title | Optical Trapping of Gold Nano-Array on Polystyrene Bead and Light-Mediated Self-Assembly of Gold Nanorod Dimer | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 廖駿偉(Jiunn-Woei Liaw) | |
| dc.contributor.oralexamcommittee | 鄧崇任(Tsung-Jen Teng) | |
| dc.subject.keyword | 光力,高斯光束,接觸模態,非接觸模態,自組裝,圓偏振極化,圓偏振二色性,手徵性,光力矩, | zh_TW |
| dc.subject.keyword | optical force,Gaussian beam,contact mode,noncontact mode,self-assembly,circularly polarized,circular dichroism,chirality,optical torque, | en |
| dc.relation.page | 65 | |
| dc.identifier.doi | 10.6342/NTU202002464 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-14 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0508202014162300.pdf 未授權公開取用 | 10.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
