請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53105完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王倫(Lon Wang) | |
| dc.contributor.author | Chih-Hao Hsu | en |
| dc.contributor.author | 徐志豪 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:44:42Z | - |
| dc.date.available | 2020-08-20 | |
| dc.date.copyright | 2015-08-20 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-10 | |
| dc.identifier.citation | 1. I. Riant, 'Fiber Bragg Gratings for Optical Telecommunications,' Comptes Rendus Physique, Vol. 4, pp.41-49, 2003.
2. Y. J. Rao, 'In-Fibre Bragg Grating Sensors,' Measurement Science and Technology, Vol. 8, pp.355-375, 1997. 3. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putna7m, and E. J. Friebele, 'Fiber Grating Sensors,' IEEE Journal of Lightwave Technology, Vol. 15, pp.1442-1463, 1997. 4. R. Kashyap, “Fiber Bragg Grating ,”Academic Press, Chap. 2, 1999. 5. Chee S. Goh and M. R. Mokhtar , “Wavelength Tuning of Fiber Bragg Gratings Over 90 nm Using a Simple Tuning Package,” IEEE Photonics Technology Letters, Vol. 15, pp.557-559, 2003. 6. Lin Li, Jianxing Geng and Ling Zhao, “Response Characteristics of Thin-Film-Heated Tunable Fiber Bragg Gratings,” IEEE Photonics Technology Letters, Vol. 15, pp.545-547, 2003. 7. Brugioni. S. and Meucci. R., 'Refractive indices of the nematic mixture E7 at 1550nm.' Infrared Physics & Technology, Vol. 49, pp. 210-212, 2007. 8. Y.J. Liu and X.W. Sun, “Holographic Polymer-Dispersed Liquid Crystals: Materials, Formation and Applications”, Advances in OptoElectronics, Volume 2008, Article ID 684349. 9. Vincent K.S. Hsiao , Changgui Lu, Guang S. He and Michael Pan, “High contrast switching of distributed-feedback lasing in dye-doped H-PDLC transmission grating structures,” Optics Express , Vol. 13, pp.3787-3794, 2005. 10. Anna E. Fox, Kashma Rai, and Adam K. Fontecchio, “Holographically formed polymer dispersed liquid crystal films for transmission mode spectrometer applications,” Applied Optics, Vol. 46, 6277-6282, 2007. 11. Munekazu Date, Yoshie Takeuchi, Keiji Tanaka and Kinya Kato, “Full-color reflective display device using holographically fabricated polymer-dispersed liquid crystal (HPDLC),” Journal of SID, Vol. 7, pp.17-22, 1999. 12. Filip Bruyneel, Herbert De Smet, Jan Vanfleteren, André Van Calster, “Cell gap optimization and alignment effects in reflective PDLC microdisplays,” Liquid Crystals, Vol. 28, pp. 1245-1252, 2001. 13. S. Kojima, S. Komatsuzaki,Y. Kurosawa, and A. Hongo, 'Embedding Type Strain Sensors Using Small-Diameter Fiber Bragg Grating to Composite Laminate Structures,' Hitachi Cable Review, No.23, pp. 11- 15,2004 14. D. Marcuse, 'Theory of Dielectric Optical Waveguide,' New York: Academic, Chap. 2, 1991. 15. T. Erdogan, 'Cladding-Mode Resonances in Short- and Long-Period Fiber Grating Filters,' J. Opt. Soc., Vol. 14, pp. 1760-1773, 1997. 16. G. Laffont and P. Ferdinand, 'Tilted Short-Period Fibre-Bragg-Grating-Induced Coupling to Cladding Modes for Accurate Refractometry,' Measurement Science and Technology, Vol. 12, pp. 765-700, 2001. 17. S. W. James and R. P. Tatam, 'Optical Fibre Long-Period Grating Sensors: Characteristics and Application,' Measurement Science and Technology, Vol. 14, pp. 49-61, 2003. 18. T. Erdogan, 'Fiber Grating Spectra,' IEEE Journal of Lightwave Technology, Vol. 15, pp. 1277-1294, 1997. 19. L. Keigo, “Elements of Photonics Vol II: For Fiber & Integrated Optics,” Chap.11, 2002. 20. 張家壽, “應用改良式抽絲法實現微小分波多工器之開發與分析,” 國立台灣大學光電工程學研究所碩士論文, 2007. 21. S. M. Chuo, M. H. Wan, L. A. Wang, and J. S. Wang, 'Multi-Stage Modified Fiber Drawing Process and Related Diameter Measuring System,' IEEE Journal of Lightwave Technology, Vol. 27, pp. 2983-2988, 2009. 22. 陳永彬, “於平面基板與滾筒表面以步進對準式干涉微影技術接合次微米週期性圖案,” 國立台灣大學光電工程研究所博士論文, 2001. 23. 陳柏志, “精細元件電弧接合技術之開發與特性研究,” 國立台灣大學機械工程學研究所碩士論文, 2001. 24. Keiji Tanaka, Kinya Kato and Munekazu Date, “Fabrication of Holographic Polymer Dispersed Liquid Crystal (HPDLC) with High Reflection Efficiency,” Japanese Journal of Applied Physics, Vol. 38, pp. 277– 278, 1999. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53105 | - |
| dc.description.abstract | 利用全息分散式聚合物液晶在光纖內部做通訊波段的可調變式濾波器在本工作中已經初步發展成功。我們利用抽絲技術將中空光纖的纖心直徑縮減到符合單模波導傳遞條件。將分散式聚合物液晶引入處理過的中空光纖後,把光纖放置在雙光干涉系統下曝光,做液晶與聚合物相分離,並形成週期性結構的布拉格光柵。外加電壓驅動內部液晶轉動,造成折射率上升使布拉格波段偏移,此結果在亦在本文做討論。為了避免耦合造成損耗過大,我們將單模光纖連接在完成的結構兩端。此外,由於單模光纖纖心與中空光纖纖心大小差距較大造成傳輸損耗,我們將單模光纖做抽細的動作使差距縮小降低損耗。又因為聚合物分散液晶的物質特性,我們也嘗試增加內部光柵數目來提升反射效率。 | zh_TW |
| dc.description.abstract | An in-line wavelength tunable filter based on holographic polymer-dispersed liquid crystal (HPDLC) working in the communication band is demonstrated. PDLC is infiltrated in a hollow-core fiber whose single-mode waveguiding operation is achieved by shrinking the hollow-core diameter to an appropriate value. To periodically separate polymer and liquid crystal, two-beam interference exposure is employed, and a Bragg grating (BG) is thus formed. The resultant Bragg wavelength is shown tunable by applying an external voltage to the BG region. To reduce the coupling loss, tapered single-mode fibers (SMFs) are directly connected to the input and output ports of the HPDLC-based filter to realize an in-line fiber device. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:44:42Z (GMT). No. of bitstreams: 1 ntu-104-R01941108-1.pdf: 3498929 bytes, checksum: d5b008fcd52c759742efaea3e047b9af (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | Contents
Abstract (Chinese)……………………………………….…….I Abstract (English)………………………………………..........II Statement of Contributions……………………………………III Contents……………………………..………………………...IV List of Tables……………………………………..………......VII List of Figures………………...………………………..........VIII Chapter 1 Introduction………………………………………….1 1.1 Introduction of Fiber Bragg Grating (FBG)……………...…..1 1.2 Motivation…………………………………………………....…1 1.3 Organization of the Thesis………………………………….......3 Chapter 2 Principle of Fiber Bragg Grating.……………....…...5 2.1 Structure of Fiber Bragg Gratings and Analysis of Guided Mode………………...……………………………………...….6 2.2 Mode Coupling in Uniform Fiber Bragg Gratings………….......................................................................11 2.3 Coupling Coefficient………………………….…………....…16 2.4 Reflection Spectrum Analysis of Uniform Fiber Bragg Gratings………….……………………………………..…….18 2.5 Summary…………………………...……………………….....22 Chapter 3 Fabrication of an In-line Wavelength Tunable Filter Based on HPDLC......................................................................23 3.1 Fabrication of Tapered SMF and Hollow-Core Fiber………………………………………….………………...….24 3.2 Preparation of Liquid Crystal………………………………........31 3.3 IL Concept and Process of Grating Formation…………….….34 3.4 Arc Splicing between a Drawn SMF and a Drawn Hollow-Core Fiber Printing……………………………………………………....37 3.5 Summary………………………………….…………………..41 Chapter 4 Optical Measurement of an In-line BG Based on HPDLC………………………………………………………42 4.1 Experiment Set Up….....................................................................42 4.2 Measurement results…………………………………….………..44 4-2.1 Measurement of 5 μm and 2μm In-Line BG……………..…..…….......44 4-2.2 Measurement of Single-Mode Operation for the In-Line BG.................47 4.3 Measured Results for External Applied Voltages………………...50 4.4 Summary…………………………………………………..….......54 Chapter 5 Conclusion and Future Work………………….......55 5.1 Conclusion……………………………………..…………………55 5.2 Further Work……………………………………..…………….....56 References……………………………………………..……...57 List of Tables Table 3-1 Sample input parameter for creating different size microfibers……….......28 Table 3-2 Parameters of liquid crystal E7.……………………………………….......32 Table 3-3 Parameters of NOA65……………………………………………………..32 List of Figures Figure 2-1 Schematic diagram of fiber grating in a step-index fiber...............................5 Figure 2-2 Effective index parameter b versus normalized frequency V (a) ~10 (b) ~1.5 for the core-mode of a step-index fiber …………………………………………9 Figure 2-3 Core confinement factor Γ versus normalized frequency V (a) 0 ~10 (b) 0~1.5 for the core mode of a step-index fiber …………………..…………..…10 Figure 2-4 Measured transmission spectrum of a 8 mm long standard FBG photo-written in a single-mode step-index optical fiber ……………………………...14 Figure 2-5 Measured transmission spectrum of an LPG with period 320 μm……...…15 Figure 2-6 Calculated reflection spectra in a uniform grating with =2(dashed line) and =8 (slid line)……………………………………………………………...…………....21 Figure 3-1 Fabrication process of microfiber……………………………………….…26 Figure 3-2 Schematic diagram of fiber drawing………………………………..……..27 Figure 3-3 The operation windows of LabView for motors controlling….…………...28 Figure 3-4 OM images (a) side view of drawn SMF (b) side view of drawn hollow-core fiber (c) end view of drawn hollow-core fiber.………………………………………..29 Figure 3-5 Chemical structures of NVP………………………………….……………33 Figure 3-6 Chemical structures of RB……….………………………………………...33 Figure 3-7 Schematic of 2-beam IL…………………………………………………...36 Figure 3-8 Schematic of the 2-beam IL system in our lab…………………………….36 Figure 3-9 Photo of the modified arc splicing device………………………….……...39 Figure 3-10 Unstable arc discharge due to too close arc distance…………………….39 Figure 3-11 A stable arc discharge……………………………………………..……...40 Figure 3-12 OM image of a tapered SMF and a hollow-core fiber fusing together...…40 Figure 4-1 Schematic diagram of measurement setup.…..............................................43 Figure 4-2 Transmission spectra of an in-line BG for 5 μm core diameter……………45 Figure 4-3 (a) Transmission spectra of an in-line BG for 2 μm core diameter (b) Reflection spectra of an in-line BG for 2 μm core diameter..…………………………45 Figure 4-4 Transmission spectrum of an in-line BG for single-mode operation………48 Figure 4-5 Reflection spectrum of an in-line BG for single-mode operation………....48 Figure 4-6 Far field of reflected beam from an in-line BG……………………………49 Figure 4-7 Reflection spectra of an in-line BG as the applied voltage varied………...52 Figure 4-8 Function of Bragg wavelength to applied electric field……………….......52 Figure 4-9 Reflection spectra of in-line BGs as the lengths of BGs vary……………..53 | |
| dc.language.iso | en | |
| dc.subject | 全像素聚合物分散液晶 | zh_TW |
| dc.subject | 布拉格光柵 | zh_TW |
| dc.subject | 可調變式濾波器 | zh_TW |
| dc.subject | 中空光纖 | zh_TW |
| dc.subject | fiber Bragg grating | en |
| dc.subject | HPDLC | en |
| dc.subject | wavelength tunable filter | en |
| dc.subject | hollow core fiber | en |
| dc.title | 全息分散式聚合物液晶線上可調變式濾波器 | zh_TW |
| dc.title | An in-line wavelength tunable filter based on holographic polymer-dispersed liquid crystal | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡永傑(Wing-Kit Choi),黃鼎偉(Ding-Wei Huang) | |
| dc.subject.keyword | 布拉格光柵,全像素聚合物分散液晶,可調變式濾波器,中空光纖, | zh_TW |
| dc.subject.keyword | fiber Bragg grating,HPDLC,wavelength tunable filter,hollow core fiber, | en |
| dc.relation.page | 60 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-10 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 3.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
