請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53101完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳克強(Keqiang Wu) | |
| dc.contributor.author | Wei-Ting Shih | en |
| dc.contributor.author | 施威廷 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:44:28Z | - |
| dc.date.available | 2015-08-16 | |
| dc.date.copyright | 2015-08-16 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-10 | |
| dc.identifier.citation | Aalto, M.K., Helenius, E., Kariola, T., Pennanen, V., Heino, P., Horak, H., Puzorjova, I., Kollist, H., and Palva, E.T. (2012). ERD15--an attenuator of plant ABA responses and stomatal aperture. Plant Sci. 182: 19-28.
Alves, M.S., Reis, P.A., Dadalto, S.P., Faria, J.A., Fontes, E.P., and Fietto, L.G. (2011). A novel transcription factor, ERD15 (Early Responsive to Dehydration 15), connects endoplasmic reticulum stress with an osmotic stress-induced cell death signal. J Biol. Chem. 286: 20020-20030. Ay, N., Irmler, K., Fischer, A., Uhlemann, R., Reuter, G., and Humbeck, K. (2009). Epigenetic programming via histone methylation at WRKY53 controls leaf senescence in Arabidopsis thaliana. Plant J. 58: 333-346. Bakshi, M., and Oelmuller, R. (2014). WRKY transcription factor: Jack of many trades in plants. Plant Signal Behav. 9. Banerjee, A., and Roychoudhury, A. (2015). WRKY Proteins: Signaling and regulation of expression during abiotic stress responses. Sci.WorldJ. 2015: 807560. Bannister, A.J., and Kouzarides, T. (2011). Regulation of chromatin by histone modifications. Cell Res. 21: 381-395. Chen, H., Lai, Z.B., Shi, J.W., Xiao, Y., Chen, Z.X., and Xu, X.P. (2010a). Roles of arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress. Bmc Plant Biol. 10. Chen, L.T., and Wu, K. (2010). Role of histone deacetylases HDA6 and HDA19 in ABA and abiotic stress response. Plant Signal Behav. 5: 1318-1320. Chen, L.T., Luo, M., Wang, Y.Y., and Wu, K. (2010b). Involvement of Arabidopsis histone deacetylase HDA6 in ABA and salt stress response. J. Exp. Bot. 61: 3345-3353. Chen, X.T., Liu, J., Lin, G.F., Wang, A.R., Wang, Z.H., and Lu, G.D. (2013). Overexpression of AtWRKY28 and AtWRKY75 in Arabidopsis enhances resistance to oxalic acid and Sclerotinia sclerotiorum. Plant Cell Rep. 32: 1589-1599. Cheng, Y., Zhou, Y., Yang, Y., Chi, Y.J., Zhou, J., Chen, J.Y., Wang, F., Fan, B., Shi, K., Zhou, Y.H., Yu, J.Q., and Chen, Z. (2012). Structural and functional analysis of VQ motif-containing proteins in Arabidopsis as interacting proteins of WRKY transcription factors. Plant Physiol. 159: 810-825. Chi, Y.J., Yang, Y., Zhou, Y., Zhou, J., Fan, B.F., Yu, J.Q., and Chen, Z.X. (2013). ProteinProtein Interactions in the Regulation of WRKY Transcription Factors. Mol. Plant 6: 287-300. Choi, K., Kim, J., Hwang, H.J., Kim, S., Park, C., Kim, S.Y., and Lee, I. (2011). The FRIGIDA complex activates transcription of FLC, a strong flowering repressor in Arabidopsis, by recruiting chromatin modification factors. Plant Cell 23: 289-303. Devaiah, B.N., Karthikeyan, A.S., and Raghothama, K.G. (2007). WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiol. 143: 1789-1801. Dong, J.X., Chen, C.H., and Chen, Z.X. (2003). Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol. Biol. 51: 21-37. Duc, C., Sherstnev, A., Cole, C., Barton, G.J., and Simpson, G.G. (2013). Transcription termination and chimeric RNA formation controlled by Arabidopsis thaliana FPA. PLoS Genet. 9: e1003867. Eulgem, T., Rushton, P.J., Robatzek, S., and Somssich, I.E. (2000). The WRKY superfamily of plant transcription factors. Trends Plant Sci. 5: 199-206. Gendrel, A.V., Lippman, Z., Martienssen, R., and Colot, V. (2005). Profiling histone modification patterns in plants using genomic tiling microarrays. Nat. Methods 2: 213-218. Gu, X., Jiang, D., Yang, W., Jacob, Y., Michaels, S.D., and He, Y. (2011). Arabidopsis homologs of retinoblastoma-associated protein 46/48 associate with a histone deacetylase to act redundantly in chromatin silencing. PLoS Genet. 7: e1002366. Hara, K., Yagi, M., Kusano, T., and Sano, H. (2000). Rapid systemic accumulation of transcripts encoding a tobacco WRKY transcription factor upon wounding. Mol. Gen. Genet. 263: 30-37. Henry, E., Yadeta, K.A., and Coaker, G. (2013). Recognition of bacterial plant pathogens: local, systemic and transgenerational immunity. New Phytol. 199: 908-915. Hollender, C., and Liu, Z. (2008). Histone deacetylase genes in Arabidopsis development. J. Integr. Plant Biol. 50: 875-885. Journot-Catalino, N., Somssich, I.E., Roby, D., and Kroj, T. (2006). The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana. Plant Cell 18: 3289-3302. Kang, M.J., Jin, H.S., Noh, Y.S., and Noh, B. (2015). Repression of flowering under a noninductive photoperiod by the HDA9-AGL19-FT module in Arabidopsis. New Phytol. 206: 281-294. Kim, D.H., and Sung, S. (2013). Coordination of the vernalization response through a VIN3 and FLC gene family regulatory network in Arabidopsis. Plant Cell 25: 454-469. Kim, D.H., Zografos, B.R., and Sung, S. (2010). Mechanisms underlying vernalization-mediated VIN3 induction in Arabidopsis. Plant Signal Behav. 5: 1457-1459. Kim, D.Y., Kwon, S.I., Choi, C., Lee, H., Ahn, L., Park, S.R., Bae, S.C., Lee, S.C., and Hwang, D.J. (2013). Expression analysis of rice VQ genes in response to biotic and abiotic stresses. Gene 529: 208-214. Kim, J.M., To, T.K., Ishida, J., Matsui, A., Kimura, H., and Seki, M. (2012). Transition of chromatin status during the process of recovery from drought stress in Arabidopsis thaliana. Plant Cell Physiol. 53: 847-856. Kim, K.C., Lai, Z., Fan, B., and Chen, Z. (2008). Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense. Plant Cell 20: 2357-2371. Lai, Z.B., Vinod, K., Zheng, Z.Y., Fan, B.F., and Chen, Z.X. (2008). Roles of Arabidopsis WRKY3 and WRKY4 transcription factors in plant responses to pathogens. Bmc Plant Biol. 8. Lee, H.J., Jung, J.H., Cortes Llorca, L., Kim, S.G., Lee, S., Baldwin, I.T., and Park, C.M. (2014). FCA mediates thermal adaptation of stem growth by attenuating auxin action in Arabidopsis. Nat. Commun. 5: 5473. Li, S.J., Zhou, X., Chen, L.G., Huang, W.D., and Yu, D.Q. (2010). Functional characterization of Arabidopsis thaliana WRKY39 in heat stress. Mol. and Cells 29: 475-483. Liu, H., and Stone, S.L. (2010). Abscisic acid increases Arabidopsis ABI5 transcription factor levels by promoting KEG E3 ligase self-ubiquitination and proteasomal degradation. Plant Cell 22: 2630-2641. Liu, X., Yu, C.W., Duan, J., Luo, M., Wang, K., Tian, G., Cui, Y., and Wu, K. (2012a). HDA6 directly interacts with DNA methyltransferase MET1 and maintains transposable element silencing in Arabidopsis. Plant Physiol. 158: 119-129. Liu, Z.Q., Yan, L., Wu, Z., Mei, C., Lu, K., Yu, Y.T., Liang, S., Zhang, X.F., Wang, X.F., and Zhang, D.P. (2012b). Cooperation of three WRKY-domain transcription factors WRKY18, WRKY40, and WRKY60 in repressing two ABA-responsive genes ABI4 and ABI5 in Arabidopsis. J. Exp. Bot. 63: 6371-6392. Luo, M., Wang, Y.Y., Liu, X., Yang, S., Lu, Q., Cui, Y., and Wu, K. (2012a). HD2C interacts with HDA6 and is involved in ABA and salt stress response in Arabidopsis. J. Exp. Bot. 63: 3297-3306. Luo, M., Yu, C.W., Chen, F.F., Zhao, L., Tian, G., Liu, X., Cui, Y., Yang, J.Y., and Wu, K. (2012b). Histone deacetylase HDA6 is functionally associated with AS1 in repression of KNOX genes in arabidopsis. PLoS Genet. 8: e1003114. Machens, F., Becker, M., Umrath, F., and Hehl, R. (2014). Identification of a novel type of WRKY transcription factor binding site in elicitor-responsive cis-sequences from Arabidopsis thaliana. Plant Mol. Biol. 84: 371-385. Marquardt, S., Boss, P.K., Hadfield, J., and Dean, C. (2006). Additional targets of the Arabidopsis autonomous pathway members, FCA and FY. J. Exp. Bot. 57: 3379-3386. Miao, Y., and Zentgraf, U. (2007). The antagonist function of Arabidopsis WRKY53 and ESR/ESP in leaf senescence is modulated by the jasmonic and salicylic acid equilibrium. Plant Cell 19: 819-830. Miao, Y., Laun, T., Zimmermann, P., and Zentgraf, U. (2004). Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol. Biol. 55: 853-867. Miao, Y., Laun, T.M., Smykowski, A., and Zentgraf, U. (2007). Arabidopsis MEKK1 can take a short cut: it can directly interact with senescence-related WRKY53 transcription factor on the protein level and can bind to its promoter. Plant Mol. Biol. 65: 63-76. Miao, Y., Jiang, J., Ren, Y., and Zhao, Z. (2013). The single-stranded DNA-binding protein WHIRLY1 represses WRKY53 expression and delays leaf senescence in a developmental stage-dependent manner in Arabidopsis. Plant Physiol. 163: 746-756. Mouradov, A., Cremer, F., and Coupland, G. (2002). Control of flowering time: interacting pathways as a basis for diversity. Plant Cell 14 Suppl: S111-130. Murfett, J., Wang, X.J., Hagen, G., and Guilfoyle, T.J. (2001a). Identification of Arabidopsis histone deacetylase HDA6 mutants that affect transgene expression. Plant Cell 13: 1047-1061. Murfett, J., Wang, X.J., Hagen, G., and Guilfoyle, T.J. (2001b). Identification of Arabidopsis histone deacetylase HDA6 mutants that affect transgene expression. Plant cell 13: 1047-1061. Murray, S.L., Ingle, R.A., Petersen, L.N., and Denby, K.J. (2007). Basal resistance against pseudomonas syringae in Arabidopsis involves WRKY53 and a protein with homology to a nematode resistance protein. Mol. Plant-Microbe Interact. 20: 1431-1438. Probst, A.V., Fagard, M., Proux, F., Mourrain, P., Boutet, S., Earley, K., Lawrence, R.J., Pikaard, C.S., Murfett, J., Furner, I., Vaucheret, H., and Mittelsten Scheid, O. (2004a). Arabidopsis histone deacetylase HDA6 is required for maintenance of transcriptional gene silencing and determines nuclear organization of rDNA repeats. Plant Cell 16: 1021-1034. Probst, A.V., Fagard, M., Proux, F., Mourrain, P., Boutet, S., Earley, K., Lawrence, R.J., Pikaard, C.S., Murfett, J., Furner, I., Vaucheret, H., and Mittelsten Scheid, O. (2004b). Arabidopsis histone deacetylase HDA6 is required for maintenance of transcriptional gene silencing and determines nuclear organization of rDNA repeats. Plant cell 16: 1021-1034. Qi, Y.P., Tsuda, K., Glazebrook, J., and Katagiri, F. (2011). Physical association of pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) immune receptors in Arabidopsis. Mol. Plant Pathology 12: 702-708. Ren, X., Chen, Z., Liu, Y., Zhang, H., Zhang, M., Liu, Q., Hong, X., Zhu, J.K., and Gong, Z. (2010a). ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. In. Plant J. Ren, X., Chen, Z., Liu, Y., Zhang, H., Zhang, M., Liu, Q., Hong, X., Zhu, J.K., and Gong, Z. (2010b). ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. Plant J. 63: 417-429. Rushton, D.L., Tripathi, P., Rabara, R.C., Lin, J., Ringler, P., Boken, A.K., Langum, T.J., Smidt, L., Boomsma, D.D., Emme, N.J., Chen, X., Finer, J.J., Shen, Q.J., and Rushton, P.J. (2012). WRKY transcription factors: key components in abscisic acid signalling. Plant Biotechnol. J. 10: 2-11. Rushton, P.J., Somssich, I.E., Ringler, P., and Shen, Q.J. (2010). WRKY transcription factors. Trends Plant Sci 15: 247-258. Seo, E., Lee, H., Jeon, J., Park, H., Kim, J., Noh, Y.S., and Lee, I. (2009). Crosstalk between cold response and flowering in Arabidopsis is mediated through the flowering-time gene SOC1 and its upstream negative regulator FLC. Plant Cell 21: 3185-3197. Shao, H.H., Chen, S.D., Zhang, K., Cao, Q.H., Zhou, H., Ma, Q.Q., He, B., Yuan, X.H., Wang, Y., Chen, Y.H., and Yong, B. (2014). Isolation and expression studies of the ERD15 gene involved in drought-stressed responses. Genet. Mol. Res. 13: 10852-10862. Sheldon, C.C., Rouse, D.T., Finnegan, E.J., Peacock, W.J., and Dennis, E.S. (2000). The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proc. Natl. Acad. Sci. U S A 97: 3753-3758. Simpson, G.G., Quesada, V., Henderson, I.R., Dijkwel, P.P., Macknight, R., and Dean, C. (2004). RNA processing and Arabidopsis flowering time control. Biochem. Soc. Trans. 32: 565-566. Singh, V., Roy, S., Singh, D., and Nandi, A.K. (2014). Arabidopsis flowering locus D influences systemic-acquired-resistance- induced expression and histone modifications of WRKY genes. J. Biosci. 39: 119-126. Sonmez, C., Baurle, I., Magusin, A., Dreos, R., Laubinger, S., Weigel, D., and Dean, C. (2011). RNA 3' processing functions of Arabidopsis FCA and FPA limit intergenic transcription. Proc. Natl. Acad. Sci. U S A 108: 8508-8513. Sun, C.X., Palmqvist, S., Olsson, H., Boren, M., Ahlandsberg, S., and Jansson, C. (2003). A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. Plant Cell 15: 2076-2092. Tang, Y., Kuang, J.F., Wang, F.Y., Chen, L., Hong, K.Q., Xiao, Y.Y., Xie, H., Lu, W.J., and Chen, J.Y. (2013). Molecular characterization of PR and WRKY genes during SA- and MeJA-induced resistance against Colletotrichum musae in banana fruit. Postharvest Biol. and Technol. 79: 62-68. To, T.K., Nakaminami, K., Kim, J.M., Morosawa, T., Ishida, J., Tanaka, M., Yokoyama, S., Shinozaki, K., and Seki, M. (2011). Arabidopsis HDA6 is required for freezing tolerance. Biochem. Biophys. Res. Commun. 406: 414-419. Tsuda, K., Sato, M., Stoddard, T., Glazebrook, J., and Katagiri, F. (2009). Network Properties of Robust Immunity in Plants. PLoS Genet. 5. Ulker, B., and Somssich, I.E. (2004). WRKY transcription factors: from DNA binding towards biological function. Curr. Opin. in Plant Biol. 7: 491-498. van Eck, L., Schultz, T., Leach, J.E., Scofield, S.R., Peairs, F.B., Botha, A.M., and Lapitan, N.L.V. (2010). Virus-induced gene silencing of WRKY53 and an inducible phenylalanine ammonia-lyase in wheat reduces aphid resistance. Plant Biotechnol. J. 8: 1023-1032. van Verk, M.C., Bol, J.F., and Linthorst, H.J.M. (2011). WRKY transcription factors involved in activation of SA biosynthesis Genes. Bmc Plant Biol. 11. Vanderauwera, S., Vandenbroucke, K., Inze, A., van de Cotte, B., Muhlenbock, P., De Rycke, R., Naouar, N., Van Gaever, T., Van Montagu, M.C., and Van Breusegem, F. (2012). AtWRKY15 perturbation abolishes the mitochondrial stress response that steers osmotic stress tolerance in Arabidopsis. Proc. Natl. Acad. Sci. U S A 109: 20113-20118. Wang, H., Xu, Q., Kong, Y.H., Chen, Y., Duan, J.Y., Wu, W.H., and Chen, Y.F. (2014a). Arabidopsis WRKY45 transcription factor activates PHOSPHATE TRANSPORTER1;1 expression in response to phosphate starvation. Plant Physiol. 164: 2020-2029. Wang, X., Yan, Y., Li, Y., Chu, X., Wu, C., and Guo, X. (2014b). GhWRKY40, a multiple stress-responsive cotton WRKY gene, plays an important role in the wounding response and enhances susceptibility to Ralstonia solanacearum infection in transgenic Nicotiana benthamiana. PLoS One 9: e93577. Wu, K., Malik, K., Tian, L., Brown, D., and Miki, B. (2000). Functional analysis of a RPD3 histone deacetylase homologue in Arabidopsis thaliana. Plant Mol. Biol. 44: 167-176. Wu, K., Zhang, L., Zhou, C., Yu, C.W., and Chaikam, V. (2008). HDA6 is required for jasmonate response, senescence and flowering in Arabidopsis. J. Exp. Bot. 59: 225-234. Xie, Y., Huhn, K., Brandt, R., Potschin, M., Bieker, S., Straub, D., Doll, J., Drechsler, T., Zentgraf, U., and Wenkel, S. (2014). REVOLUTA and WRKY53 connect early and late leaf development in Arabidopsis. Dev. 141: 4772-4783. Xu, X.P., Chen, C.H., Fan, B.F., and Chen, Z.X. (2006). Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell 18: 1310-1326. Yamasaki, K., Kigawa, T., Inoue, M., Tateno, M., Yamasaki, T., Yabuki, T., Aoki, M., Seki, E., Matsuda, T., Tomo, Y., Hayami, N., Terada, T., Shirouzu, M., Tanaka, A., Seki, M., Shinozaki, K., and Yokoyama, S. (2005). Solution structure of an Arabidopsis WRKY DNA binding domain. Plant Cell 17: 944-956. Yan, L., Liu, Z.Q., Xu, Y.H., Lu, K., Wang, X.F., and Zhang, D.P. (2013). Auto- and Cross-repression of Three Arabidopsis WRKY transcription factors WRKY18, WRKY40, and WRKY60 negatively involved in ABA signaling. J. of Plant Growth Regul. 32: 399-416. Yang, X.J., and Seto, E. (2007). HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene 26: 5310-5318. Yu, C.W., Liu, X., Luo, M., Chen, C., Lin, X., Tian, G., Lu, Q., Cui, Y., and Wu, K. (2011). HISTONE DEACETYLASE6 interacts with FLOWERING LOCUS D and regulates flowering in Arabidopsis. Plant Physiol. 156: 173-184. Zhang, J., and Zhou, J.M. (2010). Plant immunity triggered by microbial molecular signatures. Mol. Plant 3: 783-793. Zhang, Z.B., Wu, Y.L., Gao, M.H., Zhang, J., Kong, Q., Liu, Y.A., Ba, H.P., Zhou, J.M., and Zhang, Y.L. (2012). Disruption of PAMP-induced MAP kinase cascade by a Pseudomonas syringae effector activates plant immunity mediated by the NB-LRR protein SUMM2. Cell Host & Microbe 11: 253-263. Zhu, X.L., Liu, S.W., Meng, C., Qin, L.M., Kong, L.N., and Xia, G.M. (2013). WRKY transcription factors in wheat and their induction by biotic and abiotic stress. Plant Mol. Biol. Rep. 31: 1053-1067. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53101 | - |
| dc.description.abstract | WRKY轉錄因子在植物界中是一個很大的蛋白家族。在先前的研究當中,阿拉伯芥WRKY轉錄因子被報導在生物性防禦反應中扮演十分重要的角色,但在非生物逆境與植物生長發育的調控中的作用所知仍然較少。在本研究中我們發現屬於IIIa類的WRKY轉錄因子WRKY63蛋白會和RPD3類的組蛋白去乙酰化酶HDA6有交互作用,我們也觀察到WRKY63的突變株abo3對鹽逆境及離層酸有敏感的表型,並且發現WRKY63和HDA6的雙突變株abo3/axe1-5對鹽逆境會有較單突變更敏感的表型;另外,我們也觀察到abo3突變株有比野生型早開花的表型。透過檢測這些突變株與野生型植株中的基因表達,我們發現鹽逆境反應與開花調控的下游基因表達,相對於野生型在突變株中皆有受到影響。從這些結果我們可以知道WRKY63可能會藉由調控下游基因的表達來影響鹽逆境反應及開花時間的控制。 | zh_TW |
| dc.description.abstract | WRKY transcription factors constitute a large protein family in plants. Previous studies indicated that WRKY transcription factors play important roles in the regulation of gene expression associated with plant defense responses, but the role of WRKY proteins in abiotic stress responses and development is still unclear. In this study, we show that WRKY63, a member of WRKY IIIa subfamily, could interact with the RPD3-like histone deacetylase HDA6. The WRKY63 T-DNA insertion knock-out mutant, abo3, is hypersensitive to ABA and salt stress. Furthermore, abo3/axe1-5 double mutant plants displayed increased salt sensitivity compared with abo3 and axe1-5 plants. In addition, the abo3 mutant showed the early flowering phenotype compared with wild type plants. The expression levels of salt stress-responsive genes as well as genes involved in flowering time control were changed in the abo3 mutants. These data suggested that WRKY63 plays an important role in the regulation of gene expression involved in salt stress responses and flowering time control. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:44:28Z (GMT). No. of bitstreams: 1 ntu-104-R02b42019-1.pdf: 4038409 bytes, checksum: 9f15bbbcb5bbca55ed4916d2729aa9d7 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 摘要 …………………………………………………………………………………..I
Abstract ……………………………………………………………………………...II Index………………………………………………………………………………...III List of Tables ……………………………………………………………………….VI List of Figures ………………………………………………………………….….VII List of Supplementary Figures ……………………………………………………..X List of Abbreviations………………………………………………………………..XI Introduction…………………………………………………………………………..1 WRKY transcription factors……………………………………………………….1 WRKY transcription factors involved in biotic stress responses………………….2 WRKY transcription factors involved in abiotic stress responses………………...4 Histone deacetylases (HDAs) in Arabidopsis………….………….………………5 Material and Methods………….…………………………………………...………..8 Plant materials……………………………………………………………………..8 Seed germination in Petri dishes…………………………………………………..8 Measurement of germination rates………………………………………………...9 High salinity treatment………………………………………………………….....9 Quick DNA extraction…………………………………………………………...10 RNA isolation…………………………………………………………………….10 DNase treatment………………………………………………………………….12 Quantitative RT-PCR analysis……………………………………………………12 Chromatin immunoprecipitation assays………………………………………….13 Bimolecular Fluorescence Complementation (BiFC) assays…………………….22 Yeast two-hybrid assays………………………………………………………….27 In vitro pull-down assays………………………………………………………...27 Co-immunoprecipitation assays………………………………………………….28 Results………………………………………………………………………….……31 Phylogenic tree of WRKY transcription factor superfamily……………………..31 WRKY63 interacted with the RPD3-type HDAs in Arabidopsis……………......31 Identification of interaction domains of HDA6 and WRKY63………………….32 Expression of WRKY63 was induced by salt stress………………………………33 Identification of homozygous T-DNA insertion mutants of WRKY63…………...33 wrky63 mutants are hypersensitive to ABA and salt stress………………………34 Expression of stress-responsive genes under the salt treatment………………….35 Analysis of transgenic plants overexpressing WRKY63………………………….36 The abo3/axe1-5 double mutant was hypersensitive to salt stress……………….37 ERD genes were hyperacetylated in abo3/axe1-5 plants………………………...37 WRKY63 disassociated from ERD15 during the salt stress response…………...38 WRKY63 mutants displayed an early flowering phenotype……………………..39 FLC was down-regulated in abo3 mutants………………………………………39 WRKY63 targeted to FCA, FPA, and VIN3……………………………………...40 Vernalization-insensitive phenotype of abo3…………………………………….41 The relationship between WRKY63 and HDA6 in flowering time control……...41 HDA6 physically interacted with FCA and FPA…………………………………42 Discussion..…………………………………………………………………………..43 WRKY63 interacts with HDA6 in Arabidopsis………………………………….43 WRKY63 is involved in salt stress responses in Arabidopsis…………………...44 WRKY63 and HDA6 regulate gene expression through histone deacetylation…45 WRKY63 is involved in flowering time control in Arabidopsis………………...46 Repression of FCA and FPA needed the HDAs activity………………………...46 Figures………………………………………………………………………………48 Supplementary Figures…………………………………………………………….97 Tables……………………………………………………………………………….104 References…………………………………………………………………………..110 Appendix…………………………………………………………………………118 | |
| dc.language.iso | en | |
| dc.subject | WRKY63 | zh_TW |
| dc.subject | 開花時間 | zh_TW |
| dc.subject | 鹽逆境 | zh_TW |
| dc.subject | 阿拉伯芥 | zh_TW |
| dc.subject | 組蛋白去乙醯化? | zh_TW |
| dc.subject | salt stress | en |
| dc.subject | histone deacetylases | en |
| dc.subject | WRKY63 | en |
| dc.subject | flowering time | en |
| dc.subject | Arabidopsis | en |
| dc.title | 阿拉伯芥WRKY63在鹽逆境及開花時間調控的功能性分析 | zh_TW |
| dc.title | Functional analysis of Arabidopsis WRKY63 in salt stress response and flowering time control | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 施明哲(Ming-Che Shih),葉開溫(Kai-Wen Yeh),靳宗洛(Tsung-Luo Jinn),鄭秋萍(Chiu-Ping Cheng) | |
| dc.subject.keyword | 阿拉伯芥,組蛋白去乙醯化?,WRKY63,鹽逆境,開花時間, | zh_TW |
| dc.subject.keyword | Arabidopsis,histone deacetylases,WRKY63,salt stress,flowering time, | en |
| dc.relation.page | 118 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-10 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 植物科學研究所 | zh_TW |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 3.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
