請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53095
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 韋文誠 | |
dc.contributor.author | Shin-Yi Ke | en |
dc.contributor.author | 柯欣怡 | zh_TW |
dc.date.accessioned | 2021-06-15T16:44:06Z | - |
dc.date.available | 2020-08-20 | |
dc.date.copyright | 2015-08-20 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-10 | |
dc.identifier.citation | [1] Shulin Refuse Incineration Plant. (新北市樹林焚化廠,2013) (http://www.slrip.sesc.com.tw/wasteReport_m.php)
[2] M. He, B. Xiao, Z. Hu, S. Liu, X. Guo, S. Luo. Intern. J. Hydrogen Energy 34 (2009) 1342–1348 [3] J. V. Michael and T. B. Alexis. Fuel 57 (1978) 194-200. [4] Okuga, Analysis and operability optimization of an updraft gasifier unit, Dept. Mech. Engi., Eindhoven University of Technology (2007) [5] 陳尚偉,小型下抽式生質能汽化爐之研究,國立台灣大學,碩士論文,2010 [6] S. Sakai, S. E. Sawell, A. J. Chandler, T. T. Eighmy, D. S. Kosson, J. Vehlow. Waste Manage 16 (1996) 341–50 [7] H. Belevi, P. Baccini. Waste Management and Research. 7 (1989) 43-56 [8] K. M. Johannessen. J. Hazard. Mat. 47 (1996) 383-393 [9] W. K. Buah, A. M. Cunliffe, P. T. Williams. Trans Ins. Chem. Eng. 85(B5) (2007) 450–457 [10] U. Arena. Waste Management 32 (2012) 625–639 [11] M. He, Z. Hu, B. Xiao, J. Li, X. Guo, S. Luo, F. Yang, Y. Feng, G. Yang, S. Liu. Int. J. Hydrogen Energy 34 (2009) 195 – 203 [12] G. D. Lorenzo, P. Fragiacomo. Energy Conversion and Management 93 (2015) 175–186 [13] L. Fan1, Z. Qu,M. J. B.M. Pourquie, A. H.M. Verkooijen, P. V. Aravind. Fuel Cells 3 (2013) 410–427 [14] U. Arena. Waste Management 32 (2012) 625–639 [15] S. Turn, C. Kinoshita, Z. Zhang, D. Ishimura and J. Zhou. Int. J. Hydrogen Energy 23-8 (1998) 64-648 [16] P. McKendry. Bioresource Technology 83 (2002) 55–63 [17] A. Kumar, D. D. Jones, M. A. Hanna. Energies 2 (2009) 556-581 [18] D. Sutton, B. Kelleher, J. R.H. Ross. Fuel Processing Technology 73 (2001) 155–173 [19] L. Devi, M. Craje, P. Thune, K. J. Ptasinski, F. J.J.G. Janssen. Applied Catalysis A: General 294 (2005) 68–79 [20] J. Delgado, M. P. Aznar, J. Corella. Ind. Eng. Chem. Res. 36 (1997) 1535-1543 [21] J. Delgado, M. P. Aznar, J. Corella. Ind. Eng. Chem. Res. 35 (1996) 3637-3643 [22] W.B. Hauserman, Int. J. Hydrogen Energy 19 (1994) 413 [23] T. C. Li, Y. J. Yan, Z. W. Ren. Fuel Sci. Technol. 14 (1996) 879. [24] M. J. Veraa and A. T. Bell. FUEL 57 (1978) 194–200 [25] M. Ni, D. Y.C. Leung, M. K.H. Leung. Int. J. Hydrogen Energy 32 (2007) 3238-3247 [26] A. C. S.C. Teixeira, R. Giudici. Chemical Engineering Science 54 (1999) 3609-3618 [27] K. Tomishige, Y.G. Chen, and K. Fujimoto. J. Catalysis 181 (1999) 91–103 [28] G. Li 1, L. Hu, J. M. Hill. Applied Catalysis A: General 301 (2006) 16–24 [29] C. Li, Y. W. Chen, Thermochim. Acta 256 (1995) 457. [30] H. S. Roh, K. Y. Koo, U. D. Joshi, W. L. Yoon. Catal Lett (2008) 125:283–288 [31] N. Laosiripojana, W. Sangtongkitcharoen, S. Assabumrungrat. Fuel 85 (2006) 323–332 [32] H. S. Roh, H.S. Potdar, K. W. Jun. Catalysis Today 93–95 (2004) 39–44 [33] H. T. Wang, Z. H. Li and S. X. Tian. React.Kinet.Catal.Lett. 83-2 (2004) 245-252 [34] 韋文誠,固態燃料電池技術,2013 [35] V. R. Choudhary and A. M. Rajput. Ind. Eng. Chem. Res. 35 (1996) 3934-3939 [36] G. Rabenstein, V. Hacker. J. Power Sources 185 (2008) 1293–1304 [37] S.S. Bharadwaj, L.D. Schmidt. Fuel Processing Technology 42 (1995) 109-127 [38] P. D. F. Vernon, M. L. H. Green, A. K. Cheetham, A. T. Ashcroft. Catalysis Letters 6 (1990) 181-186 [39] A.T. Ashcroft, A.K. Cheetham, M.L.H. Green, P.D.F. Vernon. Nature 352 (1991) 225-226 [40] M. Kawase , M. Otaka. Waste Management 33 (2013) 2706–2712 [41] M. Yumura, E. Furlmsky. Ind. Eng. Chem. Process Des. Dev., 24 (4) (1985) 1165–1168 [42] S. S. Chauk, R. Agnihotri, R. A. Jadhav, S. K. Misro, and L.S. Fan. AIChE Journal. Vol. 46, No. 6 (2000) 1157–1167 [43] R. Warnecke. Biomass and Bioenergy 18 (2000) 489-497 [44] 劉邱豪,向下氣流式木質燃料空氣氣化爐之空氣輸配及進料控制對產氣狀況之影響研究,國立台灣大學,碩士論文,2005 [45] T.B. Reed and A. Das. Biomass Energy Foundation Press, 1998 [46] P. Lv, Z. Yuan, L. Ma, C. Wu, Y. Chen, J. Zhu. Renewable Energy 32 (2007) 2173–2185 [47] P. N. Sheth, B.V. Babu. Bioresource Technology 100 (2009) 3127–3133 [48] K. Patil , P. Bhoi, R. Huhnke, D. Bellmer. Bioresource Technology 102 (2011) 6286–6290 [49] Y. Lin, Z. Zhan, J. Liu, S. A. Barnett. Solid State Ionics 176 (2005) 1827 – 1835 [50] J. P. Trembly, A. I. Marquez, T. R. Ohrn1, D. J. Bayless. J. Power Sources 158 (2006) 263–273 [51] J. Liu, S. A. Barnett. Solid State Ionics 158 (2003) 11 – 16 [52] Y. Shiratori, T. Oshima, K. Sasaki. Int. J. Hydrogen Energy 33 (2008) 6316–6321 [53] J.K. Verma, A. Verma, A.K. Ghoshal. Int. J. Hydrogen Energy 38 (2013) 9511-9518 [54] W. Doherty, A. Reynolds, D. Kennedy. J. Power Sources 277 (2015) 292-303 [55] M. Rokni. Energy 77 (2014) 6-18 [56] F. Bellomare, M. Rokni. Renewable Energy 55 (2013) 490-500 [57] M. Rokni. Energy 76 (2014) 19-31 [58] D. Sutton, B. Kelleher, J. R.H. Ross. Fuel Processing Technology 73 (2001) 155–173 [59] M. J. Veraa and A. T. Bell. Fuel, 57 (1978) April [60] 張源開,碳酸鹽對生質料氣化之影響和合成氣催化重整後應用於固態燃料電池上之研究,國立台灣大學,碩士論文,2014 [61] G. Li, L. Hu, J. M. Hill. Applied Catalysis A: General 301 (2006) 16–24 [62] Operation manual, Ningbo Institute of Material Technology and Engineering Chinese Academy of Science, NIMTE, 2014. [63] C. Oner, S. Altun. Applied Energy 86 (2009) 2114–2120 [64] P. McKendry. Bioresource Technology 83 (2002) 37–46 [65] D. Sutton, B. Kelleher, J. R.H. Ross. Fuel Processing Technology 73 (2001) 155–173 [66] K. Y. Koo, H. S. Roh, U, H, Jung, W, L, Yoon. Catal Lett (2009) 130:217–221 [67] 寧波材料技術與工程研究所 [68] S. Hu, A. Jess, M. Xu. Fuel 86 (2007) 2778–2788 [69] 陳牧民,使用生質燃料的固態燃料電池組之開發及測試,國立台灣大學,碩士論文,2014 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53095 | - |
dc.description.abstract | 近年隨著都市廢棄物日漸增加,產生廢棄物處置的問題,最好的方法是將其資源化。因此,都市廢棄物也可以氣化,產生合成燃料,回收再利用這些垃圾的化學能。本研究將三種都市廢棄物氣化,使用碳酸鉀當作催化劑來減少產物中焦油含量,最佳狀態可將交由量降低至13.7 % 。氣化後產生的燃氣需要再經過重整催化,使用Ni-CeO2/γ-Al2O3當作催化劑,進行重整,而得到濃度為51.3 vol% H2、44.8 vol% CO及3.4 vol% CH4的合成氣。合成氣中的雜質硫化氫經由碳酸鈣吸附除硫後,可以將其濃度降至0.04 ppm。另外,研究設計一小型及可攜帶式的連續氣化爐,每小時處理量為300g。此氣化爐使用廢紙,在1.0 L min-1的空氣流量下,產生的氫氣含量達46.9 vol%,且其氫氣濃度隨進料速率及空氣流率增加而減少。最後,使用此合成器當作燃料,供給固態燃料電池,在800oC,氣體當量(φ = 0.4),電池輸出功率可達269 mW cm-2。 | zh_TW |
dc.description.abstract | The increasing amount of MSW in recent years raises the problems of sustainable disposal in Taipei cities. For recovering chemical energy, wastes can be served as fuels in gasification processing. In this study, thermal process of three city wastes was conducted and K2CO3 catalyst was used as a catalyst to reduce the amount of tar, which was lowered to 13.7 wt% in MSW. Raw syngas from gasification was then reformed by Ni-CeO2/γ-Al2O3 catalyst to get syngas with optimized quantity of 51.3 vol% H2 and 3.4 vol% CH4. Impurity of H2S generated in waste paper was reduced to 0.04 ppm by adsorption of CaCO3. Continuous gasifier designed with small-scale and portable feature was set up in a processing capability of 300 g h-1. The H2 production of waste paper in the gasifier was 46.9 vol% in air flow rate of 1 L min-1. With a higher waste feeding rate and air flow rate, the H2 content decreased. The syngas with 51.3 vol% H2, 44.8 vol% CO and 3.4 vol% CH4 was used in single cell and the power output was 269 mW cm-2 at 800oC. The gas equivalence ratio φ was ~ 0.19. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T16:44:06Z (GMT). No. of bitstreams: 1 ntu-104-R02527053-1.pdf: 3276973 bytes, checksum: f28e84b3f8882c242b4e622a65a6eb82 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 摘要………………………………………………………………………………...…. I
Abstract …………………………………………………………………………...…. II List of Figures ……………………………………………………………………... VII List of Tables …………………………………………………………………….….. X Chapter 1 Introduction ………………………………………………………………..1 Chapter 2 Literature Review ………………………………………………………….4 2.1 Gasification of City Wastes ………………………………………………….4 2.1.1 Municipal Solid Waste (MSW) ………………………………………4 2.1.2 Gasification …………………………………………………………..5 2.1.3 Catalysts for Gasification …………………………………………….5 2.1.4 Reforming of Syngas …………………………………………………6 2.1.5 Removal of H2S ………………………………………………………9 2.2 Gasifier ……………………………………………………………………..12 2.2.1 Type of Gasifiers ……………………………………………………12 2.2.2 Influence of Parameters on Gasification ………………………...….13 2.3 SOFC Combined with Biofuel ……………………………………………..17 Chapter 3 Experimental …………………………………………………………...…21 3.1 Sample Preparation ……………………………………………….…..……21 3.1.1Preparation of K2CO3 Catalyst ……………………………………...21 3.1.2 Preparation Ni-CeO2/γ-Al2O3 ………………………………….…..22 3.2 Gas Processing ………………………………………………………..……23 3.2.1 Reforming of Syngas …………………………………….………….23 3.2.2 Removal of H2S ……………………………………………….…….23 3.3 Fabrication of SOFCs ……………………………………………...……….24 3.4 Characterization ……………………………………………………...……..25 3.4.1 Analysis of Wastes …………………………………………..………25 3.4.2 Thermal Analysis ……………………………………..………..26 3.4.3 Temperature Programmed Reduction (TPR) ………….………26 3.4.4 Analysis of Gas Composition ……………………….…………27 3.4.5 SEM analysis of catalysts …………………………….………..27 3.4.6 BET of H2S absorbents ………………………………...………28 3.4.7 Temperature distribution during gasification ………………….28 3.4.8 Testing of Continuous Gasifier …………………………..…….28 3.4.9 Syngas for SOFC testing ………………………………………30 Chapter 4 Results ………………………………………………………..…………..38 4.1 Properties of City Wastes ………………………………………..…………38 4.1.1 Basic Analysis of City Wastes ……………………………..………..38 4.1.2 Thermal Analysis ……………………………………………..…….39 4.1.3 Contents from Gasification ……………………………...………….39 4.1.4 LHV in MSW ……………………………………………………….42 4.2 Effects of Catalysts ……………………………………………….……..….50 4.2.1 Properties of Catalysts ………………………………………………50 4.2.2 Composition of Syngas with Catalyst …………………………..…..51 4.2.3 TPR Test …………………………………………………………….52 4.2.4 Removal of H2S ………………………………………………….….54 4.2.5 Temperature Profile of Batch Gasification ………………………….55 4.3 Test of Continuous Gasifier ……………………………………………..….65 4.3.1 Gasification Rate and Kinetics of gasification …………………..….65 4.3.2 Temperature Distribution of Continuous Gasification …………...…67 4.3.3 Effect of Gas Flow Rate …………………………………………….68 4.3.4 Auto-thermal Reaction ………………………………………..…….69 4.3.5 Effect of Fuel Feeding Rate with Gas Compositions ………….……71 4.3.6 Energy Efficiency ……………………………………………..…….72 4.4 Testing of SOFC with Syngas …………………………………….….…….85 4.4.1 Cell Characterization …………………………………….………….85 4.4.2 Performance of SOFC ……………………………………..………..85 Chapter 5 Conclusions …………………………………………...………………….91 Reference ……………………………………………….……………………………93 | |
dc.language.iso | zh-TW | |
dc.title | 應用在固態燃料電池的都市廢棄物連續氣化及燃氣重整研究 | zh_TW |
dc.title | Continuous Gasification and Syngas Reforming of City Wastes for Solid Oxide Fuel Cells | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王錫福,洪逸明,郭俞麟 | |
dc.subject.keyword | 氣化,都市廢氣物,催化,重整,合成氣,氣化爐,固態燃料電池, | zh_TW |
dc.subject.keyword | gasification,MSW,catalyst,reforming,syngas,gasifier,SOFC, | en |
dc.relation.page | 95 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-08-10 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 3.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。