請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53085
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蔡欣穆 | |
dc.contributor.author | Hsin-I Wu | en |
dc.contributor.author | 吳欣宜 | zh_TW |
dc.date.accessioned | 2021-06-15T16:43:29Z | - |
dc.date.available | 2017-08-12 | |
dc.date.copyright | 2015-08-12 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-10 | |
dc.identifier.citation | [1] M.A. Al-Ammar, S. Alhadhrami, A. Al-Salman, A. Alarifi, H.S. Al-Khalifa, A. Alnafessah,
and M. Alsaleh. Comparative survey of indoor positioning technologies, techniques, and algorithms. In Cyberworlds (CW), 2014 International Conference on, pages 245–252, Oct 2014. [2] Zeyu Wang, Zhice Yang, Jiansong Zhang, Chenyu Huang, and Qian Zhang. Wearables can afford: Light-weight indoor positioning with visible light (best paper candidate, best video presentation award). ACM Mobisys 2015, May 2015. [3] Wikimedia Commons. First marunouchi building inside. https://upload. wikimedia.org/wikipedia/commons/1/15/Marunouchi_Building_1997_ inside-2.jpg, 01/22/1991. [4] MemoryCatcher. Supermarket. https://pixabay.com/static/uploads/photo/ 2015/04/24/08/16/supermarket-737418_640.jpg, 04/16/2015. [5] Ye-Sheng Kuo, Pat Pannuto, Ko-Jen Hsiao, and Prabal Dutta. Luxapose: Indoor positioning with mobile phones and visible light. In Proceedings of the 20th Annual International Conference on Mobile Computing and Networking, MobiCom ’14, pages 447–458, New York, NY, USA, 2014. ACM. [6] N. Rajagopal, P. Lazik, and A. Rowe. Visual light landmarks for mobile devices. In Information Processing in Sensor Networks, IPSN-14 Proceedings of the 13th International Symposium on, pages 249–260, April 2014. [7] Zhou Zhou, Mohsen Kavehrad, and Peng Deng. Indoor positioning algorithm using light-emitting diode visible light communications. volume 51, pages 085009–1. International Society for Optics and Photonics, 2012. [8] Diansheng Chen, Zhaoliang Peng, and Xiao Ling. A low-cost localization system based on artificial landmarks with two degree of freedom platform camera. In Robotics and Biomimetics (ROBIO), 2014 IEEE International Conference on, pages 625–630, Dec 2014. [9] B. Dzodzo, Long Han, Xu Chen, Huihuan Qian, and Yangsheng Xu. Realtime 2d code based localization for indoor robot navigation. In Robotics and Biomimetics (ROBIO), 2013 IEEE International Conference on, pages 486–492, Dec 2013. [10] Z.V. Farkas, K. Szekeres, and P. Korondi. Aesthetic marker decoding system for indoor robot navigation. In Industrial Electronics Society, IECON 2014 - 40th Annual Conference of the IEEE, pages 2676–2681, Oct 2014. [11] S. Saito, A. Hiyama, T. Tanikawa, and M. Hirose. Indoor marker-based localization using coded seamless pattern for interior decoration. In Virtual Reality Conference, 2007. VR ’07. IEEE, pages 67–74, March 2007. [12] V.Y. Skvortzov, Hyoung-Ki Lee, SeokWon Bang, and YongBeom Lee. Application of electronic compass for mobile robot in an indoor environment. In Robotics and Automation, 2007 IEEE International Conference on, pages 2963–2970, April 2007. [13] Ho-Duck Kim, Sang-Wook Seo, In-Hun Jang, and Kwee-Bo Sim. Slam of mobile robot in the indoor environment with digital magnetic compass and ultrasonic sensors. In Control, Automation and Systems, 2007. ICCAS ’07. International Conference on, pages 87–90, Oct 2007. [14] Hong shik Kim and Jong-Suk Choi. Advanced indoor localization using ultrasonic sensor and digital compass. In Control, Automation and Systems, 2008. ICCAS 2008. International Conference on, pages 223–226, Oct 2008. [15] Hui-Yu Lee, Hao-Min Lin, Yu-Lin Wei, Hsin-I Wu, Hsin-Mu Tsai, and Kate Ching- Ju Lin. Rollinglight: Enabling line-of-sight light-to-camera communications. In Proceedings of the 13th Annual International Conference on Mobile Systems, Applications, and Services, MobiSys ’15, pages 167–180, New York, NY, USA, 2015. ACM. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53085 | - |
dc.description.abstract | 本論文實作使用偏光標記及可見光通訊結合之室內擴增實境導航系
統。偏光片為一高分子多層複合材料,其物理機制為:將非偏振的入 射光加以過濾,只有與透射軸平行的光才可進入,另一部份則是藉由 吸收、反射和散射等作用使其遮蔽,由於偏光片有著製造工藝簡單、 價格便宜的優點,使其易於大量生產。可見光通訊則是一種新型的資 料傳輸技術,由於LED 具壽命長、低功耗、高效率之優點,使得其逐 漸取代傳統日光燈照明。基於其兼具照明及通訊之特性,其在室內定 位上具有極大的應用潛力。 我們利用一般相機作為接收端,以及市售的LED 燈具當作傳輸端, 因此不需要太多額外的花費即可使用此系統。我們的發想是:利用拍 攝貼在天花板的LED 燈具上的偏光標記,即可得知使用者及其相對的 角度,在透過LED 燈具傳輸絕對位置,便可達到室內定位及導航的功 能,此技術可適用於所有有裝設LED 照明系統的室內場所。 我們希望可以利用單顆燈及單張相片就可達到定向效果,但由於拍 攝偏光標記的畫素、距離不盡相同,每次拍攝出來的不一定為最理想 情況,因此我們設計出兩種計算相對角度的方法。我們在不同距離的 手持高度下進行實驗,測量其角度誤差,並且提出在現實應用情境下, 使用多張影像進行角度校正之方法。經實驗證實此兩種方法適用於不 同距離及解析度的情況,其誤差精準度在距離250cm 內可到達10 度內 之誤差。 | zh_TW |
dc.description.abstract | This thesis presents an augmented reality indoor navigation system with invisible polarizer marker and visible light communications (VLC). Polarizer is a polymer multi-layer composite materials. It has a physical property that
human eyes cannot distinguished the intensity of polarized light passed though by only one polarizer. But the intensity can be discriminated and controlled by adding another polarization filter with a different polarization direction. VLC is a new wireless communication technology. LED has gradually replaced the traditional fluorescent lighting because its advantages of long life, low power consumption, and high efficiency. Due to its properties of high energy efficiency and fast response time, LED has a great potential for indoor positioning. In our proposed system, we use commodity camera as the receiver and modify off-the-shelf LED light to become the transmitter, and thus it requires minimal additional cost. The main idea is that when the camera captures images with the polarizer marker on the ceiling light fixture, the orientation angle between the camera and polarizer marker can be estimated. Utilizing VLC, at the time the LED also transmits its absolute location to the camera. The device can then use these two pieces of information to estimate its own absolute location when more than one LED light is captured in the image. This solution is highly attractive for any indoor environment with LED lighting, due to our design goal is to be able to estimate the orientation of the device with a single image capture. In this thesis, we present two methods to estimate the orientation angle between marker and the camera using a single image: the ratios between the pixel intensity of different marker areas, and the orientation of the marker in the image. We also propose a method to mitigate the error with multiple images. Our system is evaluated with different image resolutions and distances between the light and the camera. Results show that the mean angle error is always less than 10◦ for a distance up to 2.5 meters. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T16:43:29Z (GMT). No. of bitstreams: 1 ntu-104-R02944020-1.pdf: 19555698 bytes, checksum: c813db1ccd1d5afa5bb4b8e7507c1cab (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 誌謝ii
摘要iii Abstract iv 1 Introduction 1 2 Related Works 5 2.1 Indoor Visible Light Positioning . . . . . . . . . . . . . . . . . . . . . . 5 2.2 2D Marker for Indoor Robot Navigation . . . . . . . . . . . . . . . . . . 6 2.3 Digital Compass for Indoor Positioning . . . . . . . . . . . . . . . . . . 7 3 System Design 9 3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 Principle of Operation: Optical Polarization Filter . . . . . . . . . . . . . 10 3.3 Polarizer Marker Design . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.4 Distinguish Polarizer Marker . . . . . . . . . . . . . . . . . . . . . . . . 12 3.4.1 Orientation Angle Estimation . . . . . . . . . . . . . . . . . . . 12 3.4.2 Mapping Pixel Intensity to Marker Area . . . . . . . . . . . . . . 14 3.4.3 Orientation Ambiguity . . . . . . . . . . . . . . . . . . . . . . . 16 3.4.4 The Vector Method . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.5 Blind Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.5.1 Blind Area Definition . . . . . . . . . . . . . . . . . . . . . . . 20 3.5.2 Mitigation of Error Within Blind Area . . . . . . . . . . . . . . . 21 3.6 Automatic Detecting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.7 Manual Marker Area Selection . . . . . . . . . . . . . . . . . . . . . . . 25 4 Implementation 26 4.1 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.2 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.3 Experimental Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5 Evaluation Results 29 5.1 Localization Accuracy based on Blind Area Repairing . . . . . . . . . . 30 5.1.1 Blind Area Repairing by Continuous Degrees . . . . . . . . . . . 31 5.1.2 Localization Accuracy of Intensity Method with Blind Area Repairing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.2 Localization Accuracy of Resolution based on Manual Detecting . . . . . 33 5.3 Performance of Automatic Detecting . . . . . . . . . . . . . . . . . . . . 37 6 Conclusion and Future Work 38 6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Bibliography 40 | |
dc.language.iso | zh-TW | |
dc.title | 使用隱形偏光標記及可見光通訊之室內擴增實境導航系統 | zh_TW |
dc.title | Augmented Reality Indoor Navigation System with Invisible Polarizer Marker and Visible Light Communications | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 曾煜棋,藍崑展,蕭旭君,林靖茹 | |
dc.subject.keyword | 偏光標記,可見光通訊,室內定位導航, | zh_TW |
dc.subject.keyword | Polarizer Marker,Visible Light Communications,Augmented Reality,Indoor Navigation, | en |
dc.relation.page | 42 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-08-10 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 資訊網路與多媒體研究所 | zh_TW |
顯示於系所單位: | 資訊網路與多媒體研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 19.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。