請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53064完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳誠亮(Cheng-Liang Chen) | |
| dc.contributor.author | Kuan-Chen Chen | en |
| dc.contributor.author | 陳冠辰 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:42:10Z | - |
| dc.date.available | 2020-08-07 | |
| dc.date.copyright | 2020-08-07 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-06 | |
| dc.identifier.citation | [1]. F. Birol, CO2 Emissions from Fuel Combustion Highlights. OECD/IEA, 2016. [2]. P. Friedlingstein, M.W. Jones, M. O'Sullivan, R.M. Andrew, J. Hauck, G.P. Peters, W. Peters, J. Pongratz, S. Sitch, C. Le Quéré, D.C.E. Bakker, J.G. Canadell, P. Ciais, R.B. Jackson, P. Anthoni, L. Barbero, A. Bastos, V. Bastrikov, M. Becker, L. Bopp, E. Buitenhuis, N. Chandra, F. Chevallier, L.P. Chini, K.I. Currie, R.A. Feely, M. Gehlen, D. Gilfillan, T. Gkritzalis, D.S. Goll, N. Gruber, S. Gutekunst, I. Harris, V. Haverd, R.A. Houghton, G. Hurtt, T. Ilyina, A.K. Jain, E. Joetzjer, J.O. Kaplan, E. Kato, K. Klein Goldewijk, J.I. Korsbakken, P. Landschützer, S.K. Lauvset, N. Lefèvre, A. Lenton, S. Lienert, D. Lombardozzi, G. Marland, P.C. McGuire, J.R. Melton, N. Metzl, D.R. Munro, J.E.M.S. Nabel, S.I. Nakaoka, C. Neill, A.M. Omar, T. Ono, A. Peregon, D. Pierrot, B. Poulter, G. Rehder, L. Resplandy, E. Robertson, C. Rödenbeck, R. Séférian, J. Schwinger, N. Smith, P.P. Tans, H. Tian, B. Tilbrook, F.N. Tubiello, G.R. van der Werf, A.J. Wiltshire, and S. Zaehle, Global Carbon Budget 2019. Earth Syst. Sci. Data, 2019. 11(4), 1783-1838. [3]. J.D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, and R.D. Srivastava, Advances in CO2 capture technology—The U.S. Department of Energy's Carbon Sequestration Program. International Journal of Greenhouse Gas Control, 2008. 2(1), 9-20. [4]. R. Ahmed, G. Liu, B. Yousaf, Q. Abbas, H. Ullah, and M.U. Ali, Recent advances in carbon-based renewable adsorbent for selective carbon dioxide capture and separation-A review. Journal of Cleaner Production, 2020. 242, 118409. [5]. T.F. Wall, Combustion processes for carbon capture. Proceedings of the Combustion Institute, 2007. 31(1), 31-47. [6]. D.Y.C. Leung, G. Caramanna, and M.M. Maroto-Valer, An overview of current status of carbon dioxide capture and storage technologies. Renewable and Sustainable Energy Reviews, 2014. 39, 426-443. [7]. J. Black, Cost and Performance Baseline for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity, in, Department of Energy/National Energy Techonology Laboratory. 2013. [8]. W.L. Theo, J.S. Lim, H. Hashim, A.A. Mustaffa, and W.S. Ho, Review of pre-combustion capture and ionic liquid in carbon capture and storage. Applied Energy, 2016. 183, 1633-1663. [9]. H. Yu, Recent developments in aqueous ammonia-based post-combustion CO2 capture technologies. Chinese Journal of Chemical Engineering, 2018. 26(11), 2255-2265. [10]. J.-L. Li and B.-H. Chen, Review of CO2 absorption using chemical solvents in hollow fiber membrane contactors. Separation and Purification Technology, 2005. 41(2), 109-122. [11]. M. Vinoba, M. Bhagiyalakshmi, Y. Alqaheem, A.A. Alomair, A. Pérez, and M.S. Rana, Recent progress of fillers in mixed matrix membranes for CO2 separation: A review. Separation and Purification Technology, 2017. 188, 431-450. [12]. F. Rezaei, S. Subramanian, J. Kalyanaraman, R.P. Lively, Y. Kawajiri, and M.J. Realff, Modeling of rapid temperature swing adsorption using hollow fiber sorbents. Chemical Engineering Science, 2014. 113, 62-76. [13]. R.M. Siqueira, G.R. Freitas, H.R. Peixoto, J.F.d. Nascimento, A.P.S. Musse, A.E.B. Torres, D.C.S. Azevedo, and M. Bastos-Neto, Carbon Dioxide Capture by Pressure Swing Adsorption. Energy Procedia, 2017. 114, 2182-2192. [14]. S.P. Reynolds, A. Mehrotra, A.D. Ebner, and J.A. Ritter, Heavy reflux PSA cycles for CO2 recovery from flue gas: Part I. Performance evaluation. Adsorption, 2008. 14(2), 399-413. [15]. R. Haghpanah, R. Nilam, A. Rajendran, S. Farooq, and I. Karimi, Cycle Synthesis and Optimization of a VSA Process for Postcombustion CO2 Capture. Vol. 59. 2013. [16]. L. Joss, M. Gazzani, and M. Mazzotti, Rational design of temperature swing adsorption cycles for post-combustion CO2 capture. Chemical Engineering Science, 2017. 158, 381-394. [17]. B. Liu, Y. Lian, S. Li, S. Deng, L. Zhao, B. Chen, and D. Wang, Experimental investigation on separation and energy-efficiency performance of temperature swing adsorption system for CO2 capture. Separation and Purification Technology, 2019. 227, 115670. [18]. F. Rezaei and P. Webley, Structured adsorbents in gas separation processes. Vol. 70. 2010. 243-256. [19]. Y. Wang, L. Zhao, A. Otto, M. Robinius, and D. Stolten, A Review of Post-combustion CO2 Capture Technologies from Coal-fired Power Plants. Energy Procedia, 2017. 114, 650-665. [20]. M.R.M. Abu-Zahra, J.P.M. Niederer, P.H.M. Feron, and G.F. Versteeg, CO2 capture from power plants: Part II. A parametric study of the economical performance based on mono-ethanolamine. International Journal of Greenhouse Gas Control, 2007. 1(2), 135-142. [21]. A. Rao and E. Rubin, A Technical, Economic, and Environmental Assessment of Amine-Based CO 2 Capture Technology for Power Plant Greenhouse Gas Control. Environmental science technology, 2002. 36, 4467-75. [22]. P. Maas, N. Nauels, L. Zhao, P. Markewitz, V. Scherer, M. Michael, D. Stolten, and J.F. Hake, Energetic and economic evaluation of membrane-based carbon capture routes for power plant processes. International Journal of Greenhouse Gas Control, 2016. 44, 124-139. [23]. H. Zhai and E.S. Rubin, Techno-Economic Assessment of Polymer Membrane Systems for Postcombustion Carbon Capture at Coal-Fired Power Plants. Environmental Science Technology, 2013. 47(6), 3006-3014. [24]. R.P. Lively, R.R. Chance, B.T. Kelley, H.W. Deckman, J.H. Drese, C.W. Jones, and W.J. Koros, Hollow Fiber Adsorbents for CO2 Removal from Flue Gas. Industrial Engineering Chemistry Research, 2009. 48(15), 7314-7324. [25]. J. Kalyanaraman, Y. Fan, R.P. Lively, W.J. Koros, C.W. Jones, M.J. Realff, and Y. Kawajiri, Modeling and experimental validation of carbon dioxide sorption on hollow fibers loaded with silica-supported poly(ethylenimine). Chemical Engineering Journal, 2015. 259, 737-751. [26]. S. Fatemeh Hosseini, M. Reza Talaie, S. Aghamiri, M. Hasan Khademi, M. Gholami, and M. Nasr Esfahany, Mathematical modeling of rapid temperature swing adsorption; the role of influencing parameters. Separation and Purification Technology, 2017. 183, 181-193. [27]. K.-C. Chen, J.-Y. Lee, and C.-L. Chen, Hollow fiber-based rapid temperature swing adsorption process for carbon capture from coal-fired power plants. Separation and Purification Technology, 2020. 247, 116958. [28]. W. Jung and K.S. Lee, Novel short-cut estimation method for the optimum total energy demand of solid sorbents in an adsorption-based CO2 capture process. Energy, 2019. [29]. I. Urieli, Case Study - The General James M. Gavin Steam Power Plant, Chapter 8, Applied Engineering Thermodynamics,. http://www.ent.ohiou.edu/~thermo/Applied/Chapt.7_11/SteamPlant/GavinCaseStudy.html, accessed., 2010. [30]. A. Zoelle, D. Keairns, L.L. Pinkerton, M.J. Turner, M. Woods, N. Kuehn, V. Shah, and V. Chou, Cost and Performance Baseline for Fossil Energy Plants Volume 1a: Bituminous Coal (PC) and Natural Gas to Electricity Revision 3. United States: N. p., 2015. [31]. K. Ramasubramanian, H. Verweij, and W.S. Winston Ho, Membrane processes for carbon capture from coal-fired power plant flue gas: A modeling and cost study. Journal of Membrane Science, 2012. 421-422, 299-310. [32]. R. Turton, R.C. Bailie, W.B. Whiting, and J.A. Shaeiwitz, Analysis, Synthesis and Design of Chemical Processes. 3rd Ed. Pearson Education, 2008. [33]. W.L. Luyben, Comparison of extractive distillation and pressure-swing distillation for acetone/chloroform separation. Computers Chemical Engineering, 2013. 50, 1-7. [34]. S. Swernath, K. Searcy, F. Rezaei, Y. Labreche, R.P. Lively, M.J. Realff, and Y. Kawajiri, Chapter 10 - Optimization and Technoeconomic Analysis of Rapid Temperature Swing Adsorption Process for Carbon Capture from Coal-Fired Power Plant, in Computer Aided Chemical Engineering, Y. Fengqi, Editor. 2015, Elsevier. p. 253-278. [35]. T.C. Merkel, H.Q. Lin, X.T. Wei, and R. Baker, Power plant post-combustion carbon dioxide capture: An opportunity for membranes. Journal of Membrane Science, 2010. 359(1-2), 126-139. [36]. L. Zhao, E. Riensche, L. Blum, and D. Stolten, Multi-stage gas separation membrane processes used in post-combustion capture: Energetic and economic analyses. Journal of Membrane Science, 2010. 359(1-2), 160-172. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53064 | - |
| dc.description.abstract | 燃燒後碳捕捉是減少燃煤電廠二氧化碳排放的有效方法之一。其最大的挑戰是降低能耗,此研究將探討新型的中空纖維快速變溫吸附系統應用於捕捉燃煤發電廠排出的二氧化碳。此方法相較其他吸附系統可以有效地縮短操作時間,並且有應用低階能量的潛力。 研究中採用一系列平行雙塔操作來連續捕捉一個550 MW燃煤發電廠煙道氣中的二氧化碳,並以捕捉率、純度和能耗來探討主要操作變數對系統的影響,其中包括進氣體積流量,棄置時間,脫附溫度等關鍵操作變數。研究發現進氣體積流量顯著影響捕捉率,較小的流量會提高捕捉率。而棄置時間則是與捕捉的二氧化碳純度息息相關,放棄時間愈長純度會愈高。研究發現以一組雙塔中空纖維RTSA來模擬,當入口氣體體積流量為0.12 m3/s時,放棄時間為7秒,脫附溫度為120°C,二氧化碳之純度和捕獲率皆可超過90%。 本研究考慮使用從低壓渦輪機中所抽取之蒸汽作為雙塔真空快速溫變吸附(DC-vRTSA)所需熱源的可能性,計算對燃煤電廠發電效率和蒸汽流量的影響及經濟分析。DC-vRTSA在120°C到55°C的脫附溫度下分別減少了8.2%到1.9%的燃煤電廠發電效率。在經濟分析方面,結果顯示最佳的年總成本與捕捉成本在脫附溫度為60°C時分別為61.52 百萬美金及每噸二氧化碳19.20美金。 | zh_TW |
| dc.description.abstract | Post-combustion carbon capture is one of the feasible methods to reduce emission of carbon dioxide (CO2) from coal-fired power plants. The biggest challenge in this technology is reduction of energy consumption. This work proposes a hollow fiber based rapid temperature swing adsorption (RTSA) method for capturing CO2 from typical coal-fired power plants. The proposed RTSA approach can shorten the operating time and using low-grade energy for regeneration of adsorption elements. In this study, the tank-in-series model is used to simulate the RTSA process including adsorption and desorption periods. A series of parallel operation dual-columns is used to capture the CO2 continuously from the flue gas of a typical 550 MW power plant. Main operating variables including inlet gas volume flow rate, abandon time, desorption temperature on key performance factors such as discharged gas purity, capture ratio of CO2, and energy consumption per unit CO2, etc., are investigated for reducing the energy consumption. This study found that the inlet gas volume flow rate will significantly affect the capture ratio, where smaller gas volume flow rate is beneficial to increase capture ratio. The abandon time obviously affects the purity of the captured CO2, where the longer abandon time leads to higher purity. Desorption temperature affects both the capture ratio and purity of captured CO2. The higher the desorption temperature, the higher the purity and capture ratio. For one typical basic unit with dual-column hollow fibers, the study found that when the inlet gas volume flow rate is 0.12 m3/s, the abandon time is 7 s, and the desorption temperature is 120 °C, both the CO2 purity and the capture ratio can exceed 90 %. With considering the possibility of using extracted steam from a low-pressure turbine as the heating source for the dual column vacuum RTSA (DC-vRTSA), the impact on the efficiency and stream data of typical coal-fired power plants are calculated. The DC-vRTSA at 120°C-55°C will reduce the efficiency of the coal-fired power plant by 8.2 % to 1.9 %, respectively. The economic analysis of the DC-vRTSA (120°C-55°C desorption temperature) used in the coal-fired power plant has been estimated. The best total annual cost and CO2 capture costs of these processes located at 60°C desorption temperature process, is 61.52 million US dollars and 19.20 US dollars per tons of captured CO2. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:42:10Z (GMT). No. of bitstreams: 1 U0001-0508202014573900.pdf: 4852630 bytes, checksum: 149f93dbf0bbe193752f2f4af69101dc (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 摘要 ii Abstract iii Table of Contents v Figure Index vii Table Index xi 1. Introduction 1 1.1. Global Warming and Carbon Capture 1 1.2. Carbon Capture Technologies 2 1.3. Post-combustion Capture Methods 6 1.3.1. Absorption Process 7 1.3.2. Membrane Separation Process 8 1.3.3. Adsorption Process 9 1.4. Current carbon capture works 13 1.5. Hollow Fiber-Based Rapid Temperature Swing Adsorption 14 1.6. Motivation 16 2. Methodology 18 2.1. Process Simulation 18 2.1.1. Process Description 18 2.2. Mathematical Modelling 22 2.2.1. Mass Balance Equations 23 2.2.2. Energy Balance Equations 24 3. Hollow Fiber based RTSA Simulation 26 3.1. Single Hollow Fiber Simulation 26 3.2. Basic Column Simulation 30 3.3. Dual Column RTSA Simulation 32 4. Results and Discussion 38 4.1. Improvement of Capture Ratio and Purity 38 4.1.1. Adsorption Time 40 4.1.2. Gas Flow Rate 41 4.1.3. Abandon Time 41 4.1.4. Different Desorption Temperatures 43 4.2. Sensitivity Analysis 44 4.2.1. 120℃ Desorption Temperature 44 4.2.2. 100℃ Desorption Temperature 45 4.2.3. 80℃ Desorption Temperature 46 4.3. RTSA Process in A Typical Coal-fired Power Plant 48 4.4. Energy Consumption for the DC-RTSA 49 4.5. Dual Column Vacuum RTSA (DC-vRTSA) Process 52 4.6. Energy Consumption for the DC-vRTSA 59 4.7. DC-vRTSA Process in A Typical Coal-fired Power Plant 62 4.8. Economic Analysis 70 4.8.1. Sensitivity of Price Annualize Factor 75 5. Conclusions and Future Works 79 5.1. Conclusions 79 5.2. Future Works 80 Reference 81 Nomenclature 88 Appendix A Cost Model 90 | |
| dc.language.iso | en | |
| dc.subject | 二氧化碳捕捉 | zh_TW |
| dc.subject | 中空纖維管 | zh_TW |
| dc.subject | 快速溫變吸附 | zh_TW |
| dc.subject | 燃煤發電廠 | zh_TW |
| dc.subject | CO2 capture | en |
| dc.subject | Coal-fired power plant | en |
| dc.subject | Hollow fiber | en |
| dc.subject | Rapid temperature swing adsorption | en |
| dc.title | 中空纖維管快速變溫吸附應用於燃煤火力發電廠燃燒後碳捕捉程序 | zh_TW |
| dc.title | Hollow Fiber-based Rapid Temperature Swing Adsorption Process for Carbon Capture from Coal-fired Power Plants | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 錢義隆(I-Lung Chien),吳哲夫(Jeffrey D. Ward),李豪業(Hao-Yeh Lee),李瑞元(Jui-Yuan Lee),余柏毅(Bor-Yih Yu) | |
| dc.subject.keyword | 二氧化碳捕捉,燃煤發電廠,中空纖維管,快速溫變吸附, | zh_TW |
| dc.subject.keyword | CO2 capture,Coal-fired power plant,Hollow fiber,Rapid temperature swing adsorption, | en |
| dc.relation.page | 94 | |
| dc.identifier.doi | 10.6342/NTU202002469 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-06 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0508202014573900.pdf 未授權公開取用 | 4.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
