Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53052
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林?輝(Feng - Huei Lin)
dc.contributor.authorMin-yu Tzengen
dc.contributor.author曾敏諭zh_TW
dc.date.accessioned2021-06-15T16:41:26Z-
dc.date.available2020-08-28
dc.date.copyright2015-08-28
dc.date.issued2015
dc.date.submitted2015-08-11
dc.identifier.citation1. BOYLE, Andrew J.; MCNIECE, Ian K.; HARE, Joshua M. Mesenchymal stem cell therapy for cardiac repair. In: nbsp;Stem Cells for Myocardial Regeneration. Humana Press, 2010. p. 65-84.
2. SUSSMAN, Mark A.; MURRY, Charles E. Bones of contention: marrow-derived cells in myocardial regeneration. nbsp;Journal of molecular and cellular cardiology, 2008, 44.6: 950-953.
3. SCHNABEL, Lauren V., et al. Mesenchymal stem cells and insulin‐like growth factor‐I gene‐enhanced mesenchymal stem cells improve structural aspects of healing in equine flexor digitorum superficialis tendons. nbsp;Journal of Orthopaedic Research, 2009, 27.10: 1392-1398.
4. RYAN, Jennifer M., et al. Mesenchymal stem cells avoid allogeneic rejection.Journal of Inflammation, 2005, 2.1: 8.
5. CHEN, Allen Kuan-Liang; REUVENY, Shaul; OH, Steve Kah Weng. Application of human mesenchymal and pluripotent stem cell microcarrier cultures in cellular therapy: achievements and future direction. nbsp;Biotechnology advances, 2013, 31.7: 1032-1046.
6. ASTASHKINA, Anna; GRAINGER, David W. Critical analysis of 3-D organoid in vitro cell culture models for high-throughput drug candidate toxicity assessments. nbsp;Advanced drug delivery reviews, 2014, 69: 1-18.
7. YEATTS, Andrew B.; CHOQUETTE, Daniel T.; FISHER, John P. Bioreactors to influence stem cell fate: augmentation of mesenchymal stem cell signaling pathways via dynamic culture systems. nbsp;Biochimica et Biophysica Acta (BBA)-General Subjects, 2013, 1830.2: 2470-2480.
8. YANG, Yi; ROSSI, Fabio MV; PUTNINS, Edward E. Ex vivo expansion of rat bone marrow mesenchymal stromal cells on microcarrier beads in spin culture.Biomaterials, 2007, 28.20: 3110-3120.
9. TAMURA,Atsushi,et al.Temperature-responsive poly(N-isopropylacrylamide)- grafted microcarriers for large-scale non-invasive harvest of anchorage-dependent cells. nbsp;Biomaterials, 2012, 33.15: 3803-3812.
10. TIBBITT, Mark W.; ANSETH, Kristi S. Hydrogels as extracellular matrix mimics for 3D cell culture. nbsp;Biotechnology and bioengineering, 2009, 103.4: 655-663.
11. VON RECUM, Horst A., et al. Novel thermally reversible hydrogel as detachable cell culture substrate. nbsp;Journal of biomedical materials research, 1998, 40.4: 631-639.
12. MOBASHERI, A., et al. Mesenchymal stem cells in connective tissue engineering and regenerative medicine: applications in cartilage repair and osteoarthritis therapy. 2009.
13. RATAJCZAK, Mariusz Z., et al. Hunt for pluripotent stem cell–regenerative medicine search for almighty cell. nbsp;Journal of autoimmunity, 2008, 30.3: 151-162.
14. KV, KV Petrakova; AI, AI Kurolesova. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. nbsp;Transplantation, 1968, 6: 230.
15. BEANE, Olivia S.; DARLING, Eric M. Isolation, characterization, and differentiation of stem cells for cartilage regeneration. nbsp;Annals of biomedical engineering, 2012, 40.10: 2079-2097.
16. BENTZON, Jacob Fog, et al. Tissue distribution and engraftment of human mesenchymal stem cells immortalized by human telomerase reverse transcriptase gene. nbsp;Biochemical and biophysical research communications, 2005, 330.3: 633-640.
17. WAGNER, Wolfgang, et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood.Experimental hematology, 2005, 33.11: 1402-1416.
18. MUELLER, Stefan M.; GLOWACKI, Julie. Age‐related decline in the osteogenic potential of human bone marrow cells cultured in three‐dimensional collagen sponges. nbsp;Journal of cellular biochemistry, 2001, 82.4: 583-590.
19. KERN, Susanne, et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. nbsp;Stem cells, 2006, 24.5: 1294-1301.
20. PRINDULL, G., et al. CFU-F circulating in cord blood. nbsp;Blut, 1987, 54.6: 351-359.
21. CHANG, Yu‐Jen, et al. Disparate Mesenchyme‐Lineage Tendencies in Mesenchymal Stem Cells from Human Bone Marrow and Umbilical Cord Blood.Stem Cells, 2006, 24.3: 679-685.
22. C E Petrie Aronin and N Z Kuhn, R S Tuan. Tissue Engineering and Selection of Cells. Elsevier 2011,5.507
23. RASMUSSON, Ida. Immune modulation by mesenchymal stem cells.Experimental cell research, 2006, 312.12: 2169-2179.
24. NAUTA, Alma J.; FIBBE, Willem E. Immunomodulatory properties of mesenchymal stromal cells. nbsp;Blood, 2007, 110.10: 3499-3506.
25. KOCK, Linda; VAN DONKELAAR, Corrinus C.; ITO, Keita. Tissue engineering of functional articular cartilage: the current status. nbsp;Cell and tissue research, 2012, 347.3: 613-627.

26. CAHN, Frederick. Biomaterials aspects of porous microcarriers for animal cell culture. nbsp;Trends in biotechnology, 1990, 8: 131-136.
27. MALDA, Jos; FRONDOZA, Carmelita G. Microcarriers in the engineering of cartilage and bone. nbsp;Trends in biotechnology, 2006, 24.7: 299-304.
28. ASTASHKINA, Anna; GRAINGER, David W. Critical analysis of 3-D organoid in vitro cell culture models for high-throughput drug candidate toxicity assessments. nbsp;Advanced drug delivery reviews, 2014, 69: 1-18.
29. SART, Sebastien; AGATHOS, Spiros N.; LI, Yan. Engineering stem cell fate with biochemical and biomechanical properties of microcarriers. nbsp;Biotechnology progress, 2013, 29.6: 1354-1366.
30. LEVESQUE, Stephane G.; LIM, Ryan M.; SHOICHET, Molly S. Macroporous interconnected dextran scaffolds of controlled porosity for tissue-engineering applications. nbsp;Biomaterials, 2005, 26.35: 7436-7446.
31. LEE, Jungwoo; CUDDIHY, Meghan J.; KOTOV, Nicholas A. Three-dimensional cell culture matrices: state of the art. nbsp;Tissue Engineering Part B: Reviews, 2008, 14.1: 61-86.
32. MARTIN, Yella, et al. Microcarriers and their potential in tissue regeneration.Tissue Engineering Part B: Reviews, 2010, 17.1: 71-80.
33. LUE, Shingjiang Jessie; HSU, Jing-Jung; WEI, Ta-Chin. Drug permeation modeling through the thermo-sensitive membranes of poly (N-isopropylacrylamide) brushes grafted onto micro-porous films. nbsp;Journal of Membrane Science, 2008, 321.2: 146-154.
34. LIN, Feng-Huei, et al. An animal study of a novel tri-layer wound dressing material—non-woven fabric grafted with N-isopropyl acrylamide and gelatin.Materials chemistry and physics, 2000, 64.3: 189-195.
35. HIROSE, Motohiro, et al. Creation of designed shape cell sheets that are noninvasively harvested and moved onto another surface. nbsp;Biomacromolecules, 2000, 1.3: 377-381.
36. TAMURA, Atsushi, et al. Simultaneous enhancement of cell proliferation and thermally induced harvest efficiency based on temperature-responsive cationic copolymer-grafted microcarriers. nbsp;Biomacromolecules, 2012, 13.6: 1765-1773.
37. GUMUŞDERELIOĞLU, Menemşe, et al. Thermosensitive PHEMA microcarriers: ATRP synthesis, characterization, and usabilities in cell cultures. nbsp;Journal of Biomaterials Science, Polymer Edition, 2013, 24.18: 2110-2125.
38. YANG, Hee Seok, et al. Suspension culture of mammalian cells using thermosensitive microcarrier that allows cell detachment without proteolytic enzyme treatment. nbsp;Cell transplantation, 2010, 19.9: 1123-1132.
39. KIM, Dae-Won, et al. Wharton’s jelly-derived mesenchymal stem cells: phenotypic characterization and optimizing their therapeutic potential for clinical applications. nbsp;International journal of molecular sciences, 2013, 14.6: 11692-11712.
40. MCGINNES, Kimberley, et al. A fluorescence NK assay using flow cytometry.Journal of immunological methods, 1986, 86.1: 7-15.
41. BERRIDGE, Michael V.; HERST, Patries M.; TAN, An S. Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. nbsp;Biotechnology annual review, 2005, 11: 127-152.
42. LAMBERT, Joseph B., et al. nbsp;Introduction to organic spectroscopy. Macmillan Publishing Company, 1987.
43. BERRIDGE, Michael V.; HERST, Patries M.; TAN, An S. Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. nbsp;Biotechnology annual review, 2005, 11: 127-152.44.
44. ALLISON, D. A., et al. Molecular spectroscopy by means of ESCA. 1972
45. LINDBERG, BrJ, et al. Molecular spectroscopy by means of ESCA II. Sulfur compounds. Correlation of electron binding energy with structure. nbsp;Physica Scripta, 1970, 1.5-6: 286.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53052-
dc.description.abstract間質幹細胞為多功能性幹細胞,因為其俱有良好的分化能力及免疫調節的特性對於發展組織修復 (tissue repair)、組織再生 (tissue regeneration)及細胞治療 (cell therapy)是非常好的細胞來源。所以細胞需求量日趨增加,但是目前最大的挑戰為細胞數不足,現今仍然沒有一個細胞培養系統能夠穩定且有效率的培養到所需細胞數且要維持其型態(phenotype)。
本研究利用溫感性中孔洞明膠微載體作為間質幹細胞的細胞載體,並在生物反應器內進行細胞增生的研究。由於明膠有良好的生物相容性及細胞貼附能力好,常被用於細胞載體的材料。本實驗所使用過程功能封閉式生物反應器。利用灌流的方式使細胞生長在液體流動的環境,不僅能充足的提供細胞所需養分還能帶走細胞代謝物,由於過程利用蠕動幫補來進行液體流動的動力,所以不需要更換細胞培養基減少細胞污染機會。在細胞獲取方面,為了避免利用胰蛋白酶對細胞造成的傷害,本研究接枝溫感型材料PIPAAm在微載體上,細胞的獲得僅需要將溫度降低到低於LCST,即可已不傷害細胞的方式來獲取細胞,以增加細胞放大的成功機會與使用方便性。
從結果顯示,進行FTIR與ESCA可證實PIPAAm有成功接枝在微載體上。利用WST-1與Live/Dead staining可以得到細胞不論在靜態或生物反應器內培養,均可以穩定的在溫感性微載體上增生,且在生物反應器的速率大於在靜態培養的生長速率。並利用SEM與 Actin/Hoechst 染色,可以看得細胞可以貼附在整顆微載體,達到增加細胞培養密度的效果,且細胞呈現圓球狀。在細胞獲取方面,有接枝PIPAAm利用降低溫度獲取細胞可以達到很高的收穫效率。將靜態或生物反應器內培養七天後,分別利用RT-PCR與流式細胞儀,均可以證實細胞沒有因為在此系統多天培養而分化,並且維持間質幹細胞的幹性。
所以利用溫感性微載體並在生物反應器放大細胞,不但可以用最有效率且最方便的方式培養大量細胞,並且在收穫細胞方面,僅需要將溫度降低而不需要蛋白質水解酶的處理,不僅不會傷害細胞且使可以細胞獲取步驟操作更加便利。可見將溫感性微載體放入生物反應器後,將可以穩定的培養出大量且健康的細胞對於組織工程及細胞治療都是很有潛力培養系統。
zh_TW
dc.description.abstractMesenchymal stem cells (MSC) are a multipotent stromal cell. MSC can differentiate into a variety of call types and immunologic properties. It is a good source for tissue engineering, regenerative medicine and cell therapy. Therefore, increasing demand of cell number. But the most serious challenge is lack of cell number, it doesn’t have a capable of stable and efficient cell culture system to expand the enough cell and maintain cell phenotype.
In this study, thermosensitive gelatin microcarriers was used as cell carrier mesenchymal stem cells. Because gelatin has good biocompatibility and cell adhesion. Functionally-closed process bioreactor system used for expanding cells. This is perfusion system, cells culture in a circulating liquid environment, not only sufficient to provide the necessary nutrients, but also take out cell metabolism. It is no need to replace the cell culture medium to reduce the opportunities of cell contamination. Traditional process ues the proteolytic enzyme to harvest cells, but it needs degradate the cell surface membrane protein. In order to avoid the trypsinization, grafting temperature-sensitive materials poly(N-isopropylacrylamide) (PIPAAm) on microcarriers was developed in this study. The cells harvest only need to reduce the temperature to 20 °C for 30 mins.
It was chemically characterized by FTIR and ESCA, the result showed that PIPAAm was successfully grafted onto gelatin microcarrier. The result of proliferation rate showed that MSC cultured in both static and bioreactor systems, cell proliferation rate at bioreactor was higher than the static culture. For the result of SEM and Actin/Hoechst staining, the photographs showed that cell could attach and proliferate onto complete microcarrier, achieving the highest cell culture density. After 7-day culture in both static and bioreactor, the result showed that cells maintain their phenotype. Therefore, the thermosensitive microcarrier was used for expanding MSC in bioreactor, not only it can achieve more efficient and convenient system to culture a large number of cells, but also without repeated trypsinization. Thermosensitive microcarrier in bioreactor is a promising culture system to culture a lot of health cell for tissue engineering and cell therapy.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:41:26Z (GMT). No. of bitstreams: 1
ntu-104-R02548044-1.pdf: 2640211 bytes, checksum: dbc914dfec2500abe0e522f8d54aceec (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents目錄
摘要……………………………………………………………………………...I
Abstract ………………………………………………………………………..II
目錄……………………………………………………………………………...VI
圖目錄……………………………………………………………………………VII
表目錄……………………………………………………………………………IX
第一張前言
1.1間質幹細胞…………………………………………………………………1
1.2細胞微載體…………………………………………………………………2
1.3生物反應器…………………………………………………………………3
1.4細胞獲得……………………………………………………………………4
1.5研究目的……………………………………………………………………5
第二章 理論基礎
2.1幹細胞………………………………………………………………………6
2.1.1間質幹細胞……………………………………………………………….6
2.2細胞載體(cell carrier) …………………………………………………….8
2.2.1微載體 (microcarrier) …………………………………………........8
2.2.2微載體選擇 …………………………………………………………....9
2.3過程功能封閉式生物反應器 ……………………………………………...11
2.4細胞獲取 …………………………………………………………………..12
第三章 材料製備與流程
3.1實驗儀器 …………………………………………………………………..13
3.2實驗藥品 …………………………………………………………………..14
3.3實驗架構……………………………………………………………………15
3.4實驗方法……………………………………………………………………16
3.4.1 Gelatin microcarreier接枝PIPAAm ……………………………….16
3.4.2細胞接種……………………………………………………………….18
3.5材料分析 …………………………………………………………………...19
3.5.1傅式紅外線吸收光譜 ………………………………………………....19
3.5.2 ESCA …………………………………………………………………19
3.5.3以電子顯微鏡觀察微載體的為結構 ……………………………….....20
3.6細胞標記測定 ……………………………………………………………….20
3.7細胞培養分析
3.7.1掃描式電子顯微鏡 …………………………………………………....21
3.7.2細胞存活染色(Live/Dead stanining) …………………………….22
3.7.3 Actin與Heochst染色 ……………………………………………….23
3.7.4 WST-1測定……………………………………………………………23
3.7.5細胞獲取分析 …………………………………...……………………24
3.7.6 RNA的萃取與即時定量聚合酶鏈鎖反應 ……...……………………25
3.7.7細胞標記測定 ……………………………………...…………………28
第四章 結果與討論
4.1材料分析 ……………………………………………………………………29
4.1.1 PIPAAm接枝明膠微載體FTIR分析……………………..……………29
4.1.2明膠微載體接枝ESCA分析………………………………....…………30
4.1.3明膠微載體接枝ESCA分析SEM … …………………….....…………31
4.2細胞分析 ……………………………………………………………………32
4.2.1間質幹細胞之培養與細胞標記之分析 ………….…………..…………32
4.3靜態培養細胞分析……………………………………………..……………33
4.3.1掃描式電子顯微鏡之分析 …………………………..…………………33
4.3.2 Actin與Hoechst染色…………………………………………………34
4.3.3細胞存活染色分析(Live/Dead)……………………………………35
4.3.4細胞增生分析 ………………………………………………….………36
4.3.5細胞獲取分析 ………………………………………………….………37
4.3.6 Real-time PCR分析…………………………………………….……38
4.3.7.細胞標記分析…………………………………………………….……39
4.4動態培養細胞分析…………………………………………………….……40
4.4.1掃描式電子顯微鏡之分析 ……………………………………….……40
4.4.2 Actin與Hoechst染色………………………………..………….……41
4.4.3細胞存活染色分析(Live/Dead)………………...………….………41
4.4.4生物反應器細胞增生分析 ……………………………….……….……42
4.4.5細胞獲取分析 …………………………………………………….……43
4.4.6 Real-time PCR分析……………………………………………….…44
4.4.7細胞標記分析 ……………………………………………………….…45
4.4.8靜態培養與動態培養細胞放大倍數比較 …………………..……….…46
第五章 結論………………………………………………………………….….47
第六章 參考文獻………………………………………………………………..48

圖目錄
圖1.1培養皿與細胞角瓶………………………………………………………..2
圖1.2生物反應器分類 …………………………………………………………4
圖1.3實驗目的示意圖 …………………………………………………………5
圖2.1間質幹細胞的來源及分化 ……………………………………………….7
圖2.2間質幹細胞免疫調節機制………………………………………………...7
圖2.3 封閉式生物反應器 ………………………………………………………11
圖2.4細胞獲取示意圖…………………………………………………………..12
圖3.1 實驗流程圖 ………………………………………………………………15
圖3.2 PIPAAm接枝細胞載體反應過程示意圖………………………………..17
圖3.3 Calcein AM 作用機轉 …………………………………………………22
圖3.4 WST-1 與粒線體機轉圖 ………………………………………………..24
圖4.1 FTIR之結果 ……………………………………………………………..29
圖4.2 ESCA之結果 ……………………………………………………………30
圖4.3 PIPAAm接枝微載體表觀結構之SEM圖………………………………..31
圖4.4流式細胞儀進行間質幹細胞分析…………………………………………32
圖4.5細胞靜態培養之SEM結果………………………………………………..33
圖4.6靜態培養七天後利用Acitn/Hoechst 染色觀察細胞形態.......…………34
圖4.7靜態培養之細胞存活染色結果 ………………………………….………35
圖4.8利用WST-1分析靜態培養中細胞增生情況 …………………….………36
圖4.9在靜態培養中細胞收穫效率分析 ………………………………..……37
圖4.10靜態培養七天後細胞相對基因表現量分析………………………....…38
圖4.11靜態培養七天利用流式細胞儀進行間質幹細胞分析…………….……39
圖4.12細胞動態培養之SEM結果 …………………………………………….40
圖4.13動態培養七天後利用Acitn/Hoechst 染色觀察細胞形態…………….41
圖4.14細胞動態培養之細胞存活染色結果 ……………………………………41
圖4.15利用WST-1分析動態培養中細胞增生情況…………………………… 42
圖4.16在動態培養中細胞收穫效率分析 ………………………………………43
圖4.17動態培養七天後細胞相對基因表現量分析 ……………………………44
圖4.18靜態培養七天利用流式細胞儀進行間質幹細胞分析 ………………….45
圖4.19靜態與動態培養系統細胞增生分析情況比較 ……………………….…46







表目錄
表1.1治療疾病所需細胞量………………………………………………………1
表2.1細胞載體的材料分類………………………………………………………10
表2.2市售細胞微載體及其應用…………………………………………………10
表3.1實驗儀器型號及廠商………………………………………………………13
表3.2實驗藥品名稱及廠商………………………………………………………14
表3.3細胞載體接枝成分表………………………………………………………16
表3.4實驗縮寫表…………………………………………………………………17
表3.5 SEM固定液成分表………………………………………………………..22
表3.6 RT-PCR 試劑濃度表……………………………………………………...26
表3.7即時聚合酶鏈式試劑表…………………………………………………….26
表3.8本實驗PCR所使用引子……………………………………………………27
表3.9 加熱循環表設定條件 …………………………………………………….27
dc.language.isozh-TW
dc.title以溫感性材料接枝微載體在生物反應器中進行放大華通氏膠間質幹細胞的研究zh_TW
dc.titleTemperature-responsive microcarriers with poly(N-isopropylacrylamide) grafted for wharton's jelly mesenchymal stromal cell
expansion in functionally-closed process bioreactor
en
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.coadvisor林泰元(Thai -Yen Lin)
dc.contributor.oralexamcommittee郭士民,楊禎明
dc.subject.keyword溫感性,微載體,生物反應器,華通氏膠間葉幹細胞,zh_TW
dc.subject.keywordTemperature-responsive,microcarriers,en
dc.relation.page52
dc.rights.note有償授權
dc.date.accepted2015-08-11
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
2.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved