請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53019
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 江昭皚(Joe-Air Jiang) | |
dc.contributor.author | Chih-Hao Syue | en |
dc.contributor.author | 薛智豪 | zh_TW |
dc.date.accessioned | 2021-06-15T16:39:34Z | - |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-11 | |
dc.identifier.citation | Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. 2008. Time Series Analysis: Forecasting and Control. 4th ed., San Francisco: CA: Holden-Day.
Chen, S. M. 1996. Forecasting enrollments based on fuzzy time series. Fuzzy Sets Syst. 81(3): 311-319. Chen, S. M. and J. R. Hwang. 2000. Temperature prediction using fuzzy time series. IEEE Trans. Syst., Man, Cybern, B, Cybern. 30(2): 263-275. Chen, S. M. and N. Y. Wang. 2010. Fuzzy forecasting based on fuzzy-trend logical relationship groups. IEEE Trans. Syst., Man, Cybern, B, Cybern. 40(5): 1343-1358. Chen, S. M. and Y. C. Chang. 2010. Multi-variable fuzzy forecasting based on fuzzy clustering and fuzzy interpolation techniques. Inf. Sci. 180(24): 4772-4783. Chen, S. M. and C. D. Chen. 2011a. TAIEX forecasting based on fuzzy time series and fuzzy variation groups. IEEE Trans. Fuzzy Syst. 19(1): 1-12. Chen, S. M. and C. D. Chen. 2011b. Handling forecasting problems based on high-order fuzzy logical relationships. Exp. Syst. Appl. 38(4): 3857-3864. Chen, S. M., G. M. T. Manalu, J. S. Pan, and H. C. Liu. 2013. Fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and particle swarm optimization techniques. IEEE Trans. Cybern. 43(3): 1102-1117. Chen, S. M. and S. W. Chen. 2015. Fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and the probabilities of trends of fuzzy logical relationships. IEEE Trans. Cybern. 45(3): 405-417. Chuang, C. T., S. Z. Fan, and J. S. Shieh. 2009. Rule extraction by fuzzy modeling algorithm for fuzzy logic control of cisatracurium as a neuromuscular block. Eng. Appl. Artif. Intel. 22(1): 129-140. Chuang, C. L., E. C. Yang, C. L. Tseng, C. P. Chen, G. S. Lien, and J. A. Jiang. 2014. Toward anticipating pest responses to fruit farms: Revealing factors influencing the population dynamics of the Oriental Fruit Fly via automatic field monitoring. Comput. Electron. Agric. 109: 148-161. Coupland, S. and R. John. 2007. Geometric type-1 and type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 15(1): 3-15. Dancey, C. and J. Reidy. 2007. Statistics without maths for psychology: using SPSS for windows. 4th ed., Harlow: Prentice Hall. Gangwar, P. S. and S. Kumar. 2012. Partitions based computational method for high-order fuzzy time series forecasting. Exp. Syst. Appl. 39(15): 12158-12164. Hagras, H. 2004. A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots. IEEE Trans. Fuzzy Syst. 12(4): 524-539. Hagras, H. and C. Wagner. 2012. Towards the wide spread use of type-2 fuzzy logic systems in real world applications. IEEE Computational Intell. Mag. 7(3): 14-24. Hsu, Y. Y., S. M. Tse, and B. Wu. 2003. A new approach of bivariate fuzzy time series analysis to the forecasting of a stock index. Int. J. Uncertainty, Fuzziness and Knowledge Based Syst. 11(6): 671-690. Huarng, K. 2001a. Heuristic models of fuzzy time series for forecasting. Fuzzy Sets and Syst. 123(3): 369-386. Huarng, K. 2001b. Effective lengths of intervals to improve forecasting in fuzzy time series. Fuzzy Sets and Syst. 123(3): 387-394. Huarng, K. and H. K. Yu. 2005. A type 2 fuzzy time series model for stock index forecasting. Phys. A. 353(1-4): 445-462. Huarng, K. H. and T. H. K. Yu. 2006a. Ratio-based lengths of intervals to improve fuzzy time series forecasting. IEEE Trans. Syst., Man, Cybern. B, Cybern. 36(2): 328-340. Huarng, K. and T. H. K. Yu. 2006b. The application of neural networks to forecast fuzzy time series. Phys. A. 363(2): 481-491. Huarng, K. H., T. H. K. Yu, and Y. W. Hsu. 2007. A multivariate heuristic model for fuzzy time-series forecasting. IEEE Trans. Syst., Man, Cybern. B, Cybern. 37(4): 836-846. Jafarzadeh, S., M. S. Fadali, and C. Y. Evrenosoglu. 2013. Solar power prediction using interval type-2 TSK modeling. IEEE Trans. Sustainable Energy. 4(2): 333-339. Jilani, T. A. and S. M. A. Burney. 2008. A refined fuzzy time series model for stock market forecasting. Phys. A. 387(12): 2857-2862. Khosravi, A. and S. Nahavandi. 2014. Load forecasting using interval type-2 fuzzy logic systems: optimal type reduction. IEEE Trans. Ind. Inf. 10(2): 1055-1063. Kuo, I. H., S. J. Horng, T. W. Kao, T. L. Lin, C. L. Lee, and Y. Pan. 2009. An improved method for forecasting enrollments based on fuzzy time series and particle swarm optimization. Exp. Syst. Appl. 36(3): 6108-6117. Lee, C. C. 1990. Fuzzy logic in control systems: fuzzy logic controller—part I. IEEE Trans. Syst. Man Cybern. 20(2): 404-418. Liang, Q. and J. M. Mendel. 2000. Interval type-2 fuzzy logic systems: theory and design. IEEE Trans. Fuzzy Syst. 8(5): 535-550. Lin, J. and R. J. Lian. 2011. Intelligent control of active suspension systems. IEEE Trans. Ind. Electron. 58(2): 618-628. Lu, W., X. Chen, W. Pedrycz, X. Liu, and J. Yang. 2015. Using interval information granules to improve forecasting in fuzzy time series. Int. J. Approx. Reason. 57: 1-18. Melin, P., O. Mendoza, and O. Castillo. 2011. Face recognition with an improved interval type-2 fuzzy logic sugeno integral and modular neural networks. IEEE Trans. Syst., Man, Cybern. A, Syst., Humans. 41(5): 1001-1012. Shieh, J. S., C. Y. Dai, Y. R. Wen, and W. Z. Sun. 2007. A novel fuzzy pain demand index derived from patient-controlled analgesia for postoperative pain. IEEE Trans. Biomed. Eng. 54(12): 2123-2132. Singh, S. R. 2007. A simple method of forecasting based on fuzzy time series. Appl. Math. Comput. 186(1): 330-339. Singh, S. R. 2008. A computational method of forecasting based on fuzzy time series. Math. Comput. Simul. 79(3): 539-554. Singh, M., P. Kumar, and I. Kar. 2012. Implementation of vehicle to grid infrastructure using fuzzy logic controller. IEEE Trans. Smart Grid. 3(1): 565-577. Singh, P. and B. Borah. 2013. An efficient time series forecasting model based on fuzzy time series. Eng. Appl. Artif. Intel. 26(10): 2443-2457. Song, Q. and B. S. Chissom. 1993a. Forecasting enrollments with fuzzy time series—part 1. Fuzzy Sets Syst. 54(1): 1-9. Song, Q. and B. S. Chissom. 1993b. Fuzzy time series and its models. Fuzzy Sets Syst. 54(3): 269-277. Song, Q. and B. S. Chissom. 1994. Forecasting enrollments with fuzzy time series—part 2. Fuzzy Sets Syst. 62(1): 1-8. Tsaur, R. C., J. C. Yang, and H. F. Wang. 2005. Fuzzy relation analysis in fuzzy time series model. Comput. Math. Appl. 49(4): 539-548. Wagner, C. and H. Hagras. 2010. Toward general type-2 fuzzy logic systems based on zSlices. IEEE Trans. Fuzzy Syst. 18(4): 637-660. Wong, W. K., E. Bai, and A. W. C. Chu. 2010. Adaptive time-variant models for fuzzy-time-series forecasting. IEEE Trans. Syst., Man, Cybern. B, Cybern. 40(6): 1531-1542. Wu, D. and M. Nie. 2011. Comparison and practical implementation of type-reduction algorithm for type-2 fuzzy sets and systems. In “Proc. IEEE Int’l Conf. on Fuzzy Systems”, 2131-2138. Taipei, Taiwan. Wu, D. 2012. On the fundamental differences between interval type-2 and type-1 fuzzy logic controllers. IEEE Trans. Fuzzy Syst. 20(5): 823-848. Yu, H. K. 2005. A refined fuzzy time series model for forecasting. Phys. A. 346(3-4): 657-681. Yu, T. H. K. and K. H. Huarng. 2008. A bivariate fuzzy time series model to forecast the TAIEX. Exp. Syst. Appl. 34(4): 2945-2952. Yu, T. H. K. and K. H. Huarng. 2010. Corrigendum to “A bivariate fuzzy time series model to forecast the TAIEX”. Exp. Syst. Appl. 37(7): 5529. [Expert Systems with Applications. 2010. 34(4): 2945-2952.]. Zadeh, L. A. 1965. Fuzzy sets. Informat. Control. 8(3): 338-353. Zarandi, M. H. F., M. R. Faraji, and M. Karbasian. 2012. Interval type-2 fuzzy expert system for prediction of carbon monoxide concentration in mega-cities. Appl. Soft Comput. 12(1): 291-301. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53019 | - |
dc.description.abstract | 本研究提出區間第二型模糊理論系統(IT2FLS)基於差異區間應用於模糊時間序列(DIFTS)模型,包含兩種不同的DIFTS模型:IT2FLS基於差異區間應用於單變量模糊時間序列(DIUFTS)模型、IT2FLS基於差異區間應用於雙變量模糊時間序列(DIBFTS)模型。DIUFTS模型使用主要因子去預測未來,而DIBFTS模型考慮主要因子與第二因子去預測未來。DIFTS模型包含三個主要的方法:模糊時間序列預測方法、區間第二型模糊邏輯系統與差異區間。於預測過程中,模糊時間序列預測方法可以解決語言項的問題,它的架構包含四個主要的步驟。步驟一:定義與劃分論域;步驟二:定義模糊集合與模糊化時間序列;步驟三:建立模糊關係;步驟四:預測與解模糊化預測結果。DIFTS模型採用這個架構去預測未來,首先,找出數據間的差異而最大差異與最小差異使用於論域區間設定。第二,根據尋得的差異定義IT2FLS的輸入模糊集合與輸出差異區間,時間序列數據模糊襪變成模糊集合進而形成語言項。第三,在訓練階段中,模糊集合在時間 與時間 為 ;在試驗階段中,模糊集合在時間 與時間 為 ( 為未知的數值)。此外,模糊關係地圖(FRM)是根據在訓練階段的模糊關係計數所建立。第四,IT2FLS是以它比第一型模糊邏輯系統有較高的設計自由度於模糊集合而聞名。計算預測是考慮歷史數據之間的差異,使用此差異作為IT2FLS的輸入,而IT2FLS的輸出為預測的差異。最後,時間 的預測值為時間 的數據加上預測的差異。
於本研究中,DIFTS模型應用於不同的領域,包含大學註冊人數、股價指數、害蟲族群與輸電線溫度。其中許多研究已發表大學註冊人數與股價指數之預測模型,這些研究之預測結果將用來與DIUFTS模型所產生的結果做比較,以證明DIUFTS模型的預測精準度,且DIUFTS模型與其他的預測方法相比有較小均方根誤差,以證明所提出之DIUFTS模型具有較佳的預測精準度。 本研究所提出之DIUFTS模型與DIBFTS模型將應用於兩個不同的領域:害蟲族群的與輸電線溫度。於害蟲族群預測中,其主要因子為害蟲數據而第二因子為環境溫度;而於輸電線的溫度預測中,其主要因子為輸電線溫度而第二因子為風速。結果顯示DIFTS模型應用於不同的領域中皆可達到較高預測精準度基於該模型具有較高的設計自由度。 | zh_TW |
dc.description.abstract | An interval type-2 fuzzy logic system (IT2FLS) based on difference-based intervals for fuzzy time series forecasting (DIFTS) is proposed in this study, including two different DIFTS models – the IT2FLS based on difference-based intervals for univariate fuzzy time series forecasting (DIUFTS) model and the IT2FLS based on difference-based intervals for bivariate fuzzy time series forecasting (DIBFTS) model – are selected. The DIUFTS model uses the main factor to predict the future while the DIBFTS model considers both the main factor and the second factor and uses them to predict the future. The proposed DIFTS model includes three major methods: a fuzzy time series forecasting method, an IT2LFS, and difference-based intervals. The fuzzy time series forecasting method can overcome the linguistic term problems during the forecasting process, and its framework comprised four major steps: Step 1) Defining and partitioning the universe of discourse; Step 2) Defining fuzzy sets and fuzzifying time series; Step 3) Establishing fuzzy relationships; and Step 4) Forecasting and defuzzifying forecasting results. The proposed DIFTS model follows this framework to forecast the future. First, differences between the data are found, and the maximum difference and the minimum difference are used for interval settings of the universe of discourse. Second, the input fuzzy sets and output difference intervals of IT2FLS are defined based on the found differences. The time series data are fuzzified into fuzzy sets to form linguistic terms. Third, the fuzzy set between time t and time t + 1 is Ai→Aj in the training phase, and the fuzzy set between time t and time t + 1 is Ai→* (* is the unknown value) in the testing phase. Moreover, the fuzzy relationship map (FRM) is established by the count of fuzzy relationship Ai→Aj in the training phase. Fourth, an IT2FLS is known for its higher design degree of freedom on fuzzy sets compared to a type-1 fuzzy logic system. The computation of the prediction is that the differences between considered historical data are used as the inputs of the IT2FLS, and the outputs of the IT2FLS are the forecasting differences. Finally, the forecasting value at time t + 1 is the data point at time t plus the forecasting differences.
In this study, the proposed DIFTS model is applied to different areas, including college enrollment, stock indices, pest population, and temperature of power transmission lines. College enrollment prediction and stock index prediction have been investigated by many studies. The prediction results of these studies are compared with the results generated by the proposed DIUFTS model to verify the forecasting accuracy of the proposed DIUFTS model, and the proposed DIUFTS model is found that it have smaller RMSEs than other forecasting methods. The verified DIUFTS model and the DIBFTS model are then applied to two different areas: pest population and temperature of power transmission lines. In the pest population prediction, the main factor is the pest data and the second factor is the environmental temperature. In the temperature prediction of power transmission lines, the main factor is the temperature of power transmission lines and the second factor is wind speed. The results show that the proposed DIFTS model all achieves higher forecasting accuracy in different areas due to its higher design degree of freedom. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T16:39:34Z (GMT). No. of bitstreams: 1 ntu-104-R02631006-1.pdf: 7333069 bytes, checksum: 7465dabf861ba43a803aa45394391920 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | Acknowledgements (Chinese) i
Abstract (Chinese) ii Abstract iv Table of Contents vii List of Illustrations ix List of Tables xi Chapter 1. Introduction 1 1.1 Background 1 1.2 Motivation and Purpose 3 1.3 Organization of the Thesis 5 Chapter 2. Literature Review 6 2.1 Overview of The Type-1 Fuzzy Logic Theory and Applications 6 2.2 Overview of The Type-2 Fuzzy Logic Theory and Applications 10 2.3 Time Series Data and Prediction 16 2.4 Time Series Forecasting Model 18 2.5 Fuzzy Time Series Forecasting Model and Applications 19 2.6 Type-2 Fuzzy Time Series Forecasting Model and Applications 24 Chapter 3. Method 27 3.1 Fuzzy Time Series 27 3.2 Fuzzy Sets of The Interval Type-2 Fuzzy Logic System 29 3.3 An Interval Type-2 Fuzzy Logic System 32 3.4 An IT2FLS based on Difference-Based Intervals for Fuzzy Time Series Forecasting 34 3.4.1 An IT2FLS based on Difference-Based Intervals for Univariate Fuzzy Time Series Forecasting (DIUFTS) 34 3.4.2 An IT2FLS based on Difference-Based Intervals for Bivariate Fuzzy Time Series Forecasting (DIBFTS) 37 Chapter 4. Forecasting Results and Discussion 42 4.1 College Enrollment Prediction 42 4.1.1 Training Phase 43 4.1.2 Testing Phase 45 4.2 Stock Indices Prediction 48 4.2.1 Training Phase 48 4.2.2 Testing Phase 51 4.3 Pest Population Prediction 55 4.3.1 Oriental Fruit Fly 55 4.3.2 Tobacco Cutworm 61 4.4 Temperature Prediction of Power Transmission Lines 66 Chapter 5. Conclusion and Future Work 76 References 81 | |
dc.language.iso | en | |
dc.title | 區間第二型模糊邏輯系統應用於模糊時間序列預測 | zh_TW |
dc.title | An Interval Type-2 Fuzzy Logic System for Fuzzy Time Series Forecasting | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 謝建興(Jiann-Shing Shieh),王永鐘(Yung-Chung Wang),周呈霙(Cheng-Ying Chou) | |
dc.subject.keyword | 差異區間,模糊時間序列,區間第二型模糊邏輯系統, | zh_TW |
dc.subject.keyword | Difference-based interval,fuzzy time series,interval type-2 fuzzy logic system, | en |
dc.relation.page | 85 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-08-11 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
顯示於系所單位: | 生物機電工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 7.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。