Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5300
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂育道
dc.contributor.authorYi-Chi Chanen
dc.contributor.author詹益齊zh_TW
dc.date.accessioned2021-05-15T17:55:24Z-
dc.date.available2015-07-16
dc.date.available2021-05-15T17:55:24Z-
dc.date.copyright2014-07-16
dc.date.issued2014
dc.date.submitted2014-07-14
dc.identifier.citation[1] Beisser, J. (1999) “Another Way to Value Basket Options.” Working Paper, Johannes Gutenberg-Universitat Mainz.
[2] Borovkova, S.A., Permana, F.J. (2007). “Asian Basket Options and Implied Correlations in Energy Markets.” In Proceedings of the 4th IASTED International Conference on Financial Engineering and Applications, California: Anaheim, pp. 85–91.
[3] Borovkova, S.A., Permana, F.J., and Van Der Weide, J.A.M. (2012). “American Basket and Spread Option Pricing by a Simple Binomial Tree.” Journal of Derivatives, Vol. 19, No. 4 (Summer 2012), 29–38.
[4] Borovkova, S.A., Permana, F.J., Weide, H.V.D. (2007). “A Closed Form Approach To The Valuation and Hedging of Basket and Spread Option.” Journal of Derivatives, Vol. 14, No. 4 (Summer 2007), 8–24.
[5] Chang, J.J., Chen, S.N., and Wu, T.P. (2012). “A Note To Enhance the BPW Model for the Pricing of Basket and Spread Options.” Journal of Derivatives, Vol. 19, No. 3 (Spring 2012), 77–82.
[6] Fan, Y.C., Lyuu, Y.D. (2009). “The Closed-Form Approach to the Valuation and Greeks of Discrete Asian Options.” Master’s thesis, Graduate Institute of Finance, National Taiwan University, Taipei, Taiwan.
[7] Hull, J., White, A. (1993). “Efficient Procedures for Valuing European and American Path-Dependent Options.” Journal of Derivatives, Vol. 1, No. 1 (Fall 1993), 21–31.
[8] Ju, E. (1992) “Pricing Asian and basket Options via Taylor Expansion.” Journal of Computational Finance, Vol. 5, No. 3 (2002), 79–103.
[9] Klassen, T.R. (2001). “Simple, Fast and Flexible Pricing of Asian Options.” Journal of Computational Finance, Vol. 4, No. 3 (Spring 2001), 89–124.
[10] Krekel, M., Kock, J.D., Korn, R., Man, T.K. (2006). “An Analysis of Pricing Methods for Baskets Options.” In The Best of Wilmott 2, pp. 181–188. England: Wiley.
[11] Levy, E. (1992) “Pricing European Average Rate Currency Options.” Journal of International Money and Finance, Vol. 11, 474–491.
[12] Longstaff F. A., Schwartz E. S. (2001). “Valuing American Options by Simulation: A Simple Least-squares Approach.” Review of Financial Studies, Vol. 14, 113–147.
[13] Lyuu, Y.D. (2002), Financial Engineering and Computation. Cambridge: Cambridge University Press.
[14] Milevsky, M.A., S. E. Posner (1998) “Asian Options, the Sum of Lognormals, and the Reciprocal Gamma Distribution.” Journal of Financial and Quantitative Analysis, Vol. 33, No. 3, 409–422.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5300-
dc.description.abstract亞式一籃子選擇權同時具備亞式選擇權跟一籃子選擇權的特性,故難以找到選擇權價格的封閉解。在這篇論文中,我們使用平移對數常態分配 (shifted lognormal)以及負平移對數常態分配(negative shifted lognormal)搭配動差擬合(moment matching)找出三個參數(shape, scale and shift)來近似一籃子資產的價格。之後,我們利用這三個參數觀察到的性質建構一個可以近似一籃子資產價值的二元樹。最後搭配Hull-White methodology找出美式跟歐式的亞式一籃子選擇權的價格。數值實驗的結果顯示我們的方法所找出來的歐式選擇權價格與蒙地卡羅方法找出來的價格十分接近,但是美式選擇權價格與最小平方蒙地卡羅法找出來的價格相比,我們的方法明顯地高估。zh_TW
dc.description.abstractAsian basket option is hard to price. This thesis presents a new approach to price European-style and American-style Asian basket options. First, we use approximation and moment-matching techniques to find the random variable following the shifted lognormal distribution to approximate the basket value. Second, we use the random variable to build a binomial tree and combine it with the Hull-White methodology for pricing path-dependent options to price Asian basket options. Finally, we compare our numerical results with Monte Carlo simulation for European-style Asian basket options and with the least-squares Monte Carlo for American-style ones. They show that the European-style Asian basket option prices obtained by our approach are accurate and the American-style ones are overpriced by our approach.en
dc.description.provenanceMade available in DSpace on 2021-05-15T17:55:24Z (GMT). No. of bitstreams: 1
ntu-103-R01922016-1.pdf: 464084 bytes, checksum: cd5b2fe6bbb21f70174f9a228477aed1 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書 2
謝辭 3
摘要 4
Abstract 5
Introduction 7
1. The Model 10
1.1 Generalized lognormal approach 10
1.2 Finding parameters in GLN and binomial tree 11
1.3 Building binomial tree 16
2. The Hull-White Methodology 18
2.1 Finding the running averages 18
2.2 Backward induction 19
3. Experiment results 21
4. Conclusion 28
5. References 29
dc.language.isoen
dc.subject封閉解zh_TW
dc.subjectHull-White法zh_TW
dc.subject動差擬合zh_TW
dc.subject平移對數常態分佈zh_TW
dc.subject亞式一籃子選擇權zh_TW
dc.subjectHull-White methodologyen
dc.subjectclosed-form solutionen
dc.subjectmoment matchingen
dc.subjectshifted lognormal distributionen
dc.subjectAsian basket optionen
dc.title使用二元樹評價亞式一籃子選擇權zh_TW
dc.titleAsian Basket Option Pricing by a Simple Binomial Treeen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee戴天時,張經略,王釧茹
dc.subject.keyword亞式一籃子選擇權,平移對數常態分佈,動差擬合,封閉解,Hull-White法,zh_TW
dc.subject.keywordAsian basket option,shifted lognormal distribution,moment matching,closed-form solution,Hull-White methodology,en
dc.relation.page30
dc.rights.note同意授權(全球公開)
dc.date.accepted2014-07-14
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf453.21 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved