Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53003
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝宗霖
dc.contributor.authorChen-Hung Linen
dc.contributor.author林晨弘zh_TW
dc.date.accessioned2021-06-15T16:38:41Z-
dc.date.available2020-08-17
dc.date.copyright2015-08-17
dc.date.issued2014
dc.date.submitted2015-08-12
dc.identifier.citation[1] Fujishima, Akira, and Kenichi Honda. 'Electrochemical photolysis of water at a semiconductor electrode.' nature 238 (1972): 37-8.
[2] Fujishima, Akira, and Kenichi Honda. 'Electrochemical evidence for the mechanism of the primary stage of photosynthesis.' Bulletin of the chemical society of Japan 44, no. 4 (1971): 1148-1150.
[3] Ni, Meng, Michael KH Leung, Dennis YC Leung, and K. Sumathy. 'A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production.' Renewable and Sustainable Energy Reviews 11, no. 3 (2007): 401-425.
[4] Linsebigler, Amy L., Guangquan Lu, and John T. Yates Jr. 'Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results.'Chemical reviews 95, no. 3 (1995): 735-758.
[5] Herrmann, Jean-Marie. 'Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants.'Catalysis today 53, no. 1 (1999): 115-129.
[6] Fujishima, Akira, Tata N. Rao, and Donald A. Tryk. 'Titanium dioxide photocatalysis.' Journal of Photochemistry and Photobiology C: Photochemistry Reviews 1, no. 1 (2000): 1-21.
[7] Anpo, Masakazu, and Masato Takeuchi. 'The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation.' Journal of catalysis 216, no. 1 (2003): 505-516.
[8] Mor, Gopal K., Karthik Shankar, Maggie Paulose, Oomman K. Varghese, and Craig A. Grimes. 'Enhanced photocleavage of water using titania nanotube arrays.' Nano letters 5, no. 1 (2005): 191-195.
[9] Mor, Gopal K., Oomman K. Varghese, Maggie Paulose, Karthik Shankar, and Craig A. Grimes. 'A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications.' Solar Energy Materials and Solar Cells 90, no. 14 (2006): 2011-2075.
[10] Kitano, Masaaki, Masaya Matsuoka, Michio Ueshima, and Masakazu Anpo. 'Recent developments in titanium oxide-based photocatalysts.' Applied Catalysis A: General 325, no. 1 (2007): 1-14.
[11] Kamat, Prashant V. 'Meeting the clean energy demand: nanostructure architectures for solar energy conversion.' The Journal of Physical Chemistry C111, no. 7 (2007): 2834-2860.
[12] Tachikawa, Takashi, Mamoru Fujitsuka, and Tetsuro Majima. 'Mechanistic insight into the TiO2 photocatalytic reactions: design of new photocatalysts.' The Journal of Physical Chemistry C 111, no. 14 (2007): 5259-5275.
[13] Chen, Xiaobo, and Samuel S. Mao. 'Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications.' Chemical reviews 107, no. 7 (2007): 2891-2959.
[14] Reyes-Coronado, David, G. Rodriguez-Gattorno, M. E. Espinosa-Pesqueira, C. Cab, R. De Coss, and G. Oskam. 'Phase-pure TiO2 nanoparticles: anatase, brookite and rutile.' Nanotechnology 19, no. 14 (2008): 145605.
[15] RamachandraáRao, C. N. 'The anatase-rutile transition. Part 1.—Kinetics of the transformation of pure anatase.' Transactions of the Faraday Society54 (1958): 1069-1073.
[16] Shannon, Robert D., and Joseph A. Pask. 'Kinetics of the Anatase‐Rutile Transformation.' Journal of the American Ceramic Society 48, no. 8 (1965): 391-398.
[17] Navrotsky, A., and O. J. Kleppa. 'Enthalpy of the Anatase‐Rutile Transformation.' Journal of the American Ceramic Society 50, no. 11 (1967): 626-626.
[18] Mitsuhashi, T., and O. J. Kleppa. 'Transformation enthalpies of the TiO2 polymorphs.' Journal of the American Ceramic Society 62, no. 7‐8 (1979): 356-357.
[19] Zhang, Hengzhong, and Jillian F. Banfield. 'Phase transformation of nanocrystalline anatase-to-rutile via combined interface and surface nucleation.' Journal of Materials Research 15, no. 02 (2000): 437-448.
[20] Mo, Shang-Di, and W. Y. Ching. 'Electronic and optical properties of three phases of titanium dioxide: rutile, anatase, and brookite.' Physical Review B 51, no. 19 (1995): 13023.
[21] Breckenridge, Robert G., and William R. Hosler. 'Electrical properties of titanium dioxide semiconductors.' Physical Review 91, no. 4 (1953): 793.
[22] Glassford, Keith M., and James R. Chelikowsky. 'Optical properties of titanium dioxide in the rutile structure.' Physical Review B 45, no. 7 (1992): 3874.
[23] Amtout, A., and R. Leonelli. 'Optical properties of rutile near its fundamental band gap.' Physical Review B 51, no. 11 (1995): 6842.
[24] Diebold, Ulrike. 'The surface science of titanium dioxide.' Surface science reports 48, no. 5 (2003): 53-229.
[25] Tang, H., K. Prasad, R. Sanjines, P. E. Schmid, and F. Levy. 'Electrical and optical properties of TiO2 anatase thin films.' Journal of applied physics 75, no. 4 (1994): 2042-2047.
[26] Fujishima, Akira, Xintong Zhang, and Donald A. Tryk. 'TiO2 photocatalysis and related surface phenomena.' Surface Science Reports 63, no. 12 (2008): 515-582.
[27] Sclafani, A., and J. M. Herrmann. 'Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions.' The Journal of Physical Chemistry 100, no. 32 (1996): 13655-13661.
[28] Macak, Jan M., Sergiu P. Albu, and Patrik Schmuki. 'Towards ideal hexagonal self‐ordering of TiO2 nanotubes.' physica status solidi (RRL)-Rapid Research Letters 1.5 (2007): 181-183.
[29] Gong, Dawei, Craig A. Grimes, Oomman K. Varghese, Wenchong Hu, R. S. Singh, Zhi Chen, and Elizabeth C. Dickey. 'Titanium oxide nanotube arrays prepared by anodic oxidation.' Journal of Materials Research 16, no. 12 (2001): 3331-3334.
[30] Cai, Qingyun, Maggie Paulose, Oomman K. Varghese, and Craig A. Grimes. 'The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation.' Journal of Materials Research 20, no. 01 (2005): 230-236.
[31] Macak, Jan M., Hiroaki Tsuchiya, and Patrik Schmuki. 'High‐Aspect‐Ratio TiO2 Nanotubes by Anodization of Titanium.' Angewandte Chemie International Edition 44, no. 14 (2005): 2100-2102.
[32] Macak, Jan M., Hiroaki Tsuchiya, Luciano Taveira, Saule Aldabergerova, and Patrik Schmuki. 'Smooth anodic TiO2 nanotubes.' Angewandte Chemie International Edition 44, no. 45 (2005): 7463-7465.
[33] Paulose, Maggie, Karthik Shankar, Sorachon Yoriya, Haripriya E. Prakasam, Oomman K. Varghese, Gopal K. Mor, Thomas A. Latempa, Adriana Fitzgerald, and Craig A. Grimes. 'Anodic growth of highly ordered TiO2 nanotube arrays to 134 μm in length.' The Journal of Physical Chemistry B 110, no. 33 (2006): 16179-16184.
[34] Shankar, Karthik, Gopal K. Mor, Haripriya E. Prakasam, Sorachon Yoriya, Maggie Paulose, Oomman K. Varghese, and Craig A. Grimes. 'Highly-ordered TiO2 nanotube arrays up to 220 µm in length: use in water photoelectrolysis and dye-sensitized solar cells.' Nanotechnology 18, no. 6 (2007): 065707.
[35] Albu, Sergiu P., Andrei Ghicov, Jan M. Macak, and Patrik Schmuki. '250 µm long anodic TiO2 nanotubes with hexagonal self‐ordering.' physica status solidi (RRL)-Rapid Research Letters 1, no. 2 (2007): R65-R67.
[36] Macak, J. M., H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, and P. Schmuki. 'TiO2 nanotubes: self-organized electrochemical formation, properties and applications.' Current Opinion in Solid State and Materials Science 11, no. 1 (2007): 3-18.
[37] Yasuda, Kouji, Jan M. Macak, Steffen Berger, Andrei Ghicov, and Patrik Schmuki. 'Mechanistic aspects of the self-organization process for oxide nanotube formation on valve metals.' Journal of the electrochemical society 154, no. 9 (2007): C472-C478.
[38] Taveira, L. V., J. M. Macak, H. Tsuchiya, L. F. P. Dick, and P. Schmuki. 'Initiation and Growth of Self-Organized TiO2 Nanotubes Anodically Formed in NH4F/(NH4) 2SO4 Electrolytes.' Journal of the Electrochemical Society 152, no. 10 (2005): B405-B410.
[39] Kumar, Akshay, Anuj R. Madaria, and Chongwu Zhou. 'Growth of aligned single-crystalline rutile TiO2 nanowires on arbitrary substrates and their application in dye-sensitized solar cells.' The Journal of Physical Chemistry C 114.17 (2010): 7787-7792.
[40] Liu, Bin, and Eray S. Aydil. 'Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells.'Journal of the American Chemical Society 131.11 (2009): 3985-3990.
[41] Santara, Batakrushna, et al. 'Microscopic origin of lattice contraction and expansion in undoped rutile TiO2 nanostructures.' Journal of Physics D: Applied Physics 47.21 (2014): 215302.
[42] Bhalla, A. S., Ruyan Guo, and Rustum Roy. 'The perovskite structure–a review of its role in ceramic science and technology.' Material Research Innovations 4, no. 1 (2000): 3-26.
[43] Xu, Yuhuan. Ferroelectric materials and their applications. Elsevier, 2013.
[44] Wei, Xuezheng. 'Hydrothermal synthesis of BaTiO3 thin films on nanoporous TiO 2 covered Ti substrates.' Journal of crystal growth 286, no. 2 (2006): 371-375.
[45] Padture, Nitin P., and Xuezheng Wei. 'Hydrothermal Synthesis of Thin Films of Barium Titanate Ceramic Nano‐Tubes at 200 °C.' Journal of the American Ceramic Society 86, no. 12 (2003): 2215-2217.
[46] Wei, Xuezheng, Alexander L. Vasiliev, and Nitin P. Padture. 'Nanotubes patterned thin films of barium-strontium titanate.' Journal of materials research 20, no. 8 (2005): 2140-2147.
[47] Zhao, Jianling, Xiaohui Wang, Renzheng Chen, and Longtu Li. 'Synthesis of thin films of barium titanate and barium strontium titanate nanotubes on titanium substrates.' Materials Letters 59, no. 18 (2005): 2329-2332.
[48] Chen, Di, Haitao Zhang, Rike Chen, Xiangyun Deng, Jianbao Li, Guoqing Zhang, and Liming Wang. 'Well‐ordered arrays of ferroelectric single‐crystalline BaTiO3 nanostructures.' physica status solidi (a)209, no. 4 (2012): 714-717.
[49] Lamberti, Andrea, Nadia Garino, Katarzyna Bejtka, Stefano Bianco, Stefano Stassi, Angelica Chiodoni, Giancarlo Canavese, Candido F. Pirri, and Marzia Quaglio. 'Synthesis of ferroelectric BaTiO3 tube-like arrays by hydrothermal conversion of a vertically aligned TiO2 nanotube carpet.' New Journal of Chemistry 38, no. 5 (2014): 2024-2030.
[50] Zhou, Zhi, Haixiong Tang, and Henry A. Sodano. 'Vertically aligned arrays of BaTiO3 nanowires.' ACS applied materials & interfaces 5, no. 22 (2013): 11894-11899.
[51] Koka, Aneesh, Zhi Zhou, and Henry A. Sodano. 'Vertically aligned BaTiO3 nanowire arrays for energy harvesting.' Energy & Environmental Science7, no. 1 (2014): 288-296.
[52] Zhou, Zhi, Yirong Lin, Haixiong Tang, and Henry A. Sodano. 'Hydrothermal growth of highly textured BaTiO3 films composed of nanowires.'Nanotechnology 24, no. 9 (2013): 095602.
[53] George, Steven M. 'Atomic layer deposition: an overview.' Chemical reviews 110, no. 1 (2009): 111-131.
[54] Puurunen, Riikka L. 'Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process.' Journal of applied physics 97, no. 12 (2005): 121301.
[55] Chalker, P. R., S. Romani, P. A. Marshall, M. J. Rosseinsky, S. Rushworth, and P. A. Williams. 'Liquid injection atomic layer deposition of silver nanoparticles.' Nanotechnology 21, no. 40 (2010): 405602.
[56] George, S. M., A. W. Ott, and J. W. Klaus. 'Surface chemistry for atomic layer growth.' The Journal of Physical Chemistry 100, no. 31 (1996): 13121-13131.
[57] Leskelä, Markku, and Mikko Ritala. 'Atomic layer deposition (ALD): from precursors to thin film structures.' Thin solid films 409, no. 1 (2002): 138-146.
[58] Kääriäinen, Tommi, David Cameron, Marja-Leena Kääriäinen, and Arthur Sherman. Atomic Layer Deposition: Principles, Characteristics, and Nanotechnology Applications. John Wiley & Sons, 2013.
[59] Macdonald, J. Ross, and E. Barsoukov. 'Impedance spectroscopy: theory, experiment, and applications.'History 1 (2005): 8.
[60] Mulder, W. H., J. H. Sluyters, T. Pajkossy, and L. Nyikos. 'Tafel current at fractal electrodes: connection with admittance spectra.' Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 285, no. 1 (1990): 103-115.
[61] Orazem, M. E., and B. Tribollet. 'Electrochemical Impedance Spectroscopy (2008).'
[62] Brug, G. J., A. L. G. Van Den Eeden, M. Sluyters-Rehbach, and J. H. Sluyters. 'The analysis of electrode impedances complicated by the presence of a constant phase element.' Journal of electroanalytical chemistry and interfacial electrochemistry 176, no. 1 (1984): 275-295.
[63] Stoynov, Z. 'Impedance modelling and data processing: structural and parametrical estimation.'Electrochimica Acta 35, no. 10 (1990): 1493-1499.
[64] Pajkossy, Tamás. 'Electrochemistry at fractal surfaces.' Journal of electroanalytical chemistry and interfacial electrochemistry 300, no. 1 (1991): 1-11.
[65] Paasch, G., K. Micka, and P. Gersdorf. 'Theory of the electrochemical impedance of macrohomogeneous porous electrodes.'Electrochimica Acta 38, no. 18 (1993): 2653-2662.
[66] Pajkossy, Tamás. 'Impedance of rough capacitive electrodes.' Journal of Electroanalytical Chemistry364, no. 1 (1994): 111-125.
[67] Pajkossy, Tamàs, Thomas Wandlowski, and Dieter M. Kolb. 'Impedance aspects of anion adsorption on gold single crystal electrodes.' Journal of Electroanalytical Chemistry 414, no. 2 (1996): 209-220.
[68] Kudo, Akihiko, and Yugo Miseki. 'Heterogeneous photocatalyst materials for water splitting.' Chemical Society Reviews 38, no. 1 (2009): 253-278.
[69] Kudo, Akihiko. 'Photocatalyst materials for water splitting.' Catalysis Surveys from Asia 7, no. 1 (2003): 31-38.
[70] Matsuoka, Masaya, Masaaki Kitano, Masato Takeuchi, Koichiro Tsujimaru, Masakazu Anpo, and John M. Thomas. 'Photocatalysis for new energy production: recent advances in photocatalytic water splitting reactions for hydrogen production.' Catalysis Today 122, no. 1 (2007): 51-61.
[71] Fujishima, Akira, Koichi Kohayakawa, and Kenichi Honda. 'Formation of hydrogen gas with an electrochemical photo-cell.' Bulletin of the chemical society of Japan 48, no. 3 (1975): 1041-1042.
[72] Watanabe, Tadashi, Akira Fujishima, and Ken-ichi Honda. 'Photoelectrochemical reactions at SrTiO3 single crystal electrode.' Bulletin of the Chemical Society of Japan 49, no. 2 (1976): 355-358.
[73] Van de Krol, Roel, and Michael Grätzel.Photoelectrochemical hydrogen production. New York: Springer, 2012.
[74] Nozik, Arthur J., and Rüdiger Memming. 'Physical chemistry of semiconductor-liquid interfaces.' The Journal of Physical Chemistry 100, no. 31 (1996): 13061-13078.
[75] Burbure, Nina V., Paul A. Salvador, and Gregory S. Rohrer. 'Influence of dipolar fields on the photochemical reactivity of thin titania films on BaTiO3 substrates.' Journal of the American Ceramic Society 89, no. 9 (2006): 2943-2945.
[76] Inoue, Yasunobu, Kiyoshi Sato, Kazunori Sato, and Hajime Miyama. 'A device type photocatalyst using oppositely polarized ferroelectric substrates.'Chemical physics letters 129, no. 1 (1986): 79-81.
[77] Burbure, Nina V., Paul A. Salvador, and Gregory S. Rohrer. 'Photochemical reactivity of titania films on BaTiO3 substrates: Origin of spatial selectivity.'Chemistry of Materials 22, no. 21 (2010): 5823-5830.
[78] Burbure, Nina V., Paul A. Salvador, and Gregory S. Rohrer. 'Photochemical reactivity of titania films on BaTiO3 substrates: influence of titania phase and orientation.' Chemistry of Materials 22, no. 21 (2010): 5831-5837.
[79] Li, Qiuye, Rui Li, Lanlan Zong, Jiehong He, Xiaodong Wang, and Jianjun Yang. 'Photoelectrochemical and photocatalytic properties of Ag-loaded BaTiO3/TiO2 heterostructure nanotube arrays.' International Journal of Hydrogen Energy 38, no. 29 (2013): 12977-12983.
[80] Murata, Michihiro, Kikuo Wakino, and Shigero Ikeda. 'X-ray photoelectron spectroscopic study of perovskite titanates and related compounds: an example of the effect of polarization on chemical shifts.' Journal of Electron Spectroscopy and Related Phenomena 6, no. 5 (1975): 459-464.
[81] Vasquez, R. P. 'X-ray photoelectron spectroscopy study of Sr and Ba compounds.' Journal of Electron Spectroscopy and Related Phenomena 56, no. 3 (1991): 217-240.
[82] Christie, A. B., J. Lee, I. Sutherland, and J. M. Walls. 'An XPS study of ion-induced compositional changes with group II and group IV compounds.'Applications of Surface Science 15, no. 1 (1983): 224-237.
[83] Yang, Yang, Xiaohui Wang, Changku Sun, and Longtu Li. 'Structure study of single crystal BaTiO3 nanotube arrays produced by the hydrothermal method.' Nanotechnology 20, no. 5 (2009): 055709.
[84] Hildebrandt, Erwin, Jose Kurian, Mathis M. Müller, Thomas Schroeder, Hans-Joachim Kleebe, and Lambert Alff. 'Controlled oxygen vacancy induced p-type conductivity in HfO2− x thin films.' Applied Physics Letters 99, no. 11 (2011): 112902.
[85] Ju, Yongfeng, Mahua Wang, Yunlong Wang, Shihu Wang, and Chengfang Fu. 'Electrical Properties of Amorphous Titanium Oxide Thin Films for Bolometric Application.' Advances in Condensed Matter Physics 2013 (2013).
[86] Wang, Yin, Ferdows Zahid, Jian Wang, and Hong Guo. 'Structure and dielectric properties of amorphous high-κ oxides: HfO2, ZrO2, and their alloys.' Physical Review B 85, no. 22 (2012): 224110.
[87] King, David M., Xiaohua Du, Andrew S. Cavanagh, and Alan W. Weimer. 'Quantum confinement in amorphous TiO2 films studied via atomic layer deposition.' Nanotechnology 19, no. 44 (2008): 445401.
[88] Banerjee, Parag, Israel Perez, Laurent Henn-Lecordier, Sang Bok Lee, and Gary W. Rubloff. 'Nanotubular metal–insulator–metal capacitor arrays for energy storage.' Nature Nanotechnology 4, no. 5 (2009): 292-296.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53003-
dc.description.abstract本研究藉由鈦金屬薄片在水基以及乙二醇電解液中陽極氧化合成三種不同形貌及結構的二氧化鈦奈米管陣列,並利用其作為反應模板,在水熱法環境下與含有鋇離子及鹼離子的前驅物在160至180 °C反應後可以得到鈦酸鋇與二氧化鈦的奈米複合結構。根據X光繞射分析、掃描式電子顯微鏡和X光電子能譜儀的分析,這些奈米複合結構可依照它們的形式分為四項:鈦酸鋇薄膜、花狀複合結構、雙層複合結構以及多孔複合結構。
研究中我們同時利用鈦酸鋇與二氧化鈦的多孔複合結構以及二氧化鈦奈米管陣列作為原子層沉積技術生長氧化鉿的模板,氧化鉿在填滿多孔結構後形成奈米管狀電容。在使用阻抗分析儀以及等效電路分析不同結構的氧化鉿奈米管狀電容電性後,我們發現使用特定二氧化鈦奈米管陣列作為模板生長氧化鉿所形成的電容具有最佳的表現:若是使用長度570 nm的二氧化鈦奈米管作為模板生長氧化鉿,這些排列整齊的電容陣列具有800-900 nF.cm-2的電容值,若是使用長度4 μm的二氧化鈦奈米管作為模板,可得到1.7 μF.cm-2的電容值,這些數值都明顯超越了擁有相同介電層厚度的氧化鉿薄膜電容。推測氧化鉿奈米管狀電容與二氧化鈦奈米管陣列所形成的複合結構中,不同的氧化鉿奈米柱電容之間有並聯的效果,造成整體電容值顯著的提升。
本文的另一項主題為探討鐵電基材之極化方向對於二氧化鈦光催化能力的影響。垂直排列的鐵電性鈦酸鋇奈米柱陣列是藉由兩階段的水熱法合成而得,第一步先於FTO基材之上生長排列整齊的二氧化鈦金紅石奈米柱,第二步在維持形貌的狀況下將其轉換為鈦酸鋇奈米柱。接下來使用原子層沉積技術在此具有鐵電性之鈦酸鋇奈米柱陣列間隙以及孔洞間填入二氧化鈦,形成薄膜狀之鈦酸鋇與二氧化鈦複合結構,二氧化鈦在結構之中可提供光致激發的電子電洞對並做為載子運輸的途徑。實驗結果顯示當鈦酸鋇奈米柱具有指向FTO基材的極化方向時,將有助於二氧化鈦光致激發的電子流入FTO基材,造成光電流密度值顯著的提升。
zh_TW
dc.description.abstractIn this study, titania (TiO2) nanotube arrays of different structures and morphologies were fabricated by anodic oxidation of titanium foils in aqueous ammonium sulfate or ethylene glycol electrolytes. After the anodizing process, the nanotube arrays were adopted as templates to fabricate barium titanate (BaTiO3) and TiO2 nanostructure composites using the hydrothermal method with barium hydroxide precursors at 160-180 °C. Based on the SEM, XRD and XPS analyses, the nanostructure composites can be classified into four types according to their forms: BaTiO3 thin film, flower-like BaTiO3/TiO2 composite, BaTiO3/TiO2 double-layer composite and porous BaTiO3/TiO2 composite.
This study also reports the use of atomic layer deposition (ALD) to fabricate hafnium dioxide (HfO2) nanotubular capacitors in the prepared TiO2 nanotube arrays or porous BaTiO3/TiO2 composites. In other words, the TiO2 nanotube arrays or BaTiO3/TiO2 composites were used as templates with their pores filled with HfO2 by ALD. After using the impedance analyzer and equivalent circuits to investigate the electrical properties of the HfO2 nanotubular capacitors, it is found that the capacitors with specific TiO2 nanotube (template) dimensions performed the best – 800-900 nFcm-2 was achieved with 570-nm-long TiO2 nanotubes and 1.7 μFcm-2 with 4-μm-long TiO2 nanotubes. These capacitance values are significantly higher than those of HfO2 film capacitors of the same dielectric layer thickness. It is believed that the HfO2 nanotubular capacitors formed within the TiO2 nanotube arrays behave like capacitors in parallel connection; hence, the significant increase in capacitance.
Another topic of this study was to examine the influence of the polarization direction of a ferroelectric substrate on the photocatalytic performance of TiO2. A two-step hydrothermal treatment was adopted to grow vertically aligned, ferroelectric BaTiO3 nanorod arrays on conductive FTO substrates. This involved growing rutile phase TiO2 nanorods first and then converting them into BaTiO3 nanorods. The gaps and pores between the ferroelectric BaTiO3 nanorods were then filled with TiO2 by ALD, forming film-like BaTiO3/TiO2 composites. The TiO2 component within the composites could provide both photoinduced charge carriers and a conduction path for the charge carriers. It is found that when the polarization of the BaTiO3 nanorods was poled downward toward the FTO substrate, the photoinduced electrons from the TiO2 were encouraged to flow to the FTO substrate, resulting in a significant increase in the photocurrent density.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:38:41Z (GMT). No. of bitstreams: 1
ntu-103-R02527018-1.pdf: 23404339 bytes, checksum: 19dd69dccc50be71dd31a539f7b69c6a (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iv
Abstract vi
目錄 viii
圖目錄 xii
表目錄 xix
第一章 緒論 1
1.1 研究背景與動機 1
1.2 論文架構 2
第二章 文獻回顧 3
2.1 二氧化鈦 3
2.1.1 二氧化鈦的基本性質 3
2.1.2 由電化學方法陽極氧化得二氧化鈦奈米管陣列 6
2.1.3 由水熱法製備二氧化鈦奈米柱 10
2.2 鈦酸鋇 12
2.2.1 鈦酸鋇之晶體結構與鐵電、介電性質 12
2.2.2 利用水熱法製備鈦酸鋇與二氧化鈦複合結構 14
2.3 原子層沉積技術 17
2.4 阻抗頻譜 20
2.4.1 阻抗的基本介紹 20
2.4.2 基本電路元件與行為 21
2.4.3 基本阻抗頻譜量測 26
2.5 光解水裝置與光觸媒材料 30
2.5.1 光解水反應原理 30
2.5.2 光電化學電池 (Photoelectrochemical cell, PEC) 的原理與設計 32
2.5.3 光觸媒材料 36
2.5.4 以鐵電材料之極化提升材料光催化能力 38
第三章 實驗方法 42
3.1 陽極處理 42
3.1.1 於水基電解液中進行陽極處理 42
3.1.2 於有機電解液中進行陽極處理 44
3.2 合成鈦酸鋇與二氧化鈦複合結構 45
3.2.1 鈦酸鋇薄膜 45
3.2.2 鈦酸鋇與二氧化鈦花狀複合結構 46
3.2.3 鈦酸鋇與二氧化鈦雙層複合結構 46
3.2.4 鈦酸鋇與二氧化鈦多孔複合結構 47
3.3 以水熱法合成二氧化鈦與鈦酸鋇奈米柱陣列 48
3.4 原子層沉積技術 49
3.4.1 二氧化鈦與高介電材料複合電容 49
3.4.2 二氧化鈦填入之鈦酸鋇奈米柱陣列 50
3.5 鈦酸鋇奈米柱之極化 50
3.6 材料成分組成與電性分析 52
3.6.1 微結構與晶體結構分析 52
3.6.2 原子成分判定 52
3.6.3 電極的製備 53
3.6.4 阻抗頻譜的量測 54
3.6.5 介電性質分析 54
3.6.6 電流-電壓曲線 (I-V Curve) 與電容-電壓曲線 (C-V Curve) 量測 55
3.6.7 鎳金電極反射與穿透光譜量測 56
3.6.8 光電流密度量測 56
第四章 實驗結果與討論 58
4.1 二氧化鈦奈米管陣列 58
4.2 鈦酸鋇與二氧化鈦複合結構 61
4.2.1 鈦酸鋇薄膜 61
4.2.2 鈦酸鋇與二氧化鈦花狀複合結構 63
4.2.3 鈦酸鋇與二氧化鈦雙層複合結構 66
4.2.3.1 表面形貌與組成結構分析 66
4.2.3.2 電性分析 (阻抗頻譜、等效電路擬合、介電性質分析、電流-電壓關係圖) 73
4.2.4 鈦酸鋇與二氧化鈦多孔複合結構 82
4.2.5 鈦酸鋇與二氧化鈦奈米複合結構製程流程圖 90
4.3 二氧化鈦與高介電材料複合電容 91
4.3.1 氧化鉿薄膜電容 91
4.3.1.1 阻抗頻譜與等效電路擬合 92
4.3.1.2 介電性質分析 94
4.3.2 鈦酸鋇、二氧化鈦與氧化鉿多孔複合電容 95
4.3.2.1 阻抗頻譜與等效電路擬合 98
4.3.2.2 介電性質分析 102
4.3.3 二氧化鈦與氧化鉿奈米管狀電容 105
4.3.3.1 阻抗頻譜與等效電路擬合 108
4.3.3.2 介電性質分析 110
4.3.3.3 電流-電壓關係圖 (I-V Curve) 114
4.3.3.4 TiO2/HfO2 nanotubular C與BT/TiO2/HfO2 porous C漏電流值比較 116
4.3.3.5 電容-電壓關係圖 (C-V Curve) 118
4.3.3.6 驗證二氧化鈦與氧化鉿奈米管狀電容之高電容值來源 119
4.3.3.7 管長對二氧化鈦與氧化鉿奈米管狀電容之電容表現影響 126
4.3.4 鎳金電極反射與穿透光譜量測 130
4.3.5 各項複合電容之性質綜合比較 133
4.4 以鈦酸鋇奈米柱之極化提升二氧化鈦光催化能力 136
4.4.1 二氧化鈦奈米柱與鈦酸鋇奈米柱陣列 136
4.4.2 二氧化鈦填入之鈦酸鋇奈米柱陣列 139
4.4.3 鈦酸鋇奈米柱之極化對二氧化鈦光催化能力影響 141
第五章 結論 144
5.1 研究成果 144
5.2 未來研究方向 146
5.2.1 提升鈦酸鋇於複合結構中所佔的比例 146
5.2.2 使用二階段陽極處理之二氧化鈦奈米管陣列做為反應模板 146
5.2.3 二氧化鈦與氧化鉿複合電容之改良 147
參考文獻 148
dc.language.isozh-TW
dc.subject陽極氧化二氧化鈦奈米管陣列;鈦酸鋇;氧化鉿;原子層沉積技術;奈米管狀電容;鐵電性;光電極zh_TW
dc.subjectAnodized TiO2 nanotube arraysen
dc.subjectBaTiO3en
dc.subjectHfO2en
dc.subjectAtomic layer depositionen
dc.subjectNanotubular capacitoren
dc.subjectFerroelectricityen
dc.subjectPhotoelectrodeen
dc.title光觸媒、高介電與鐵電材料奈米複合結構之形成與分析zh_TW
dc.titleFormation and Characterization of Composite Nanostructures from Photocatalytic, Dielectric and Ferroelectric Materialsen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡豐羽,陳敏璋,薛景中
dc.subject.keyword陽極氧化二氧化鈦奈米管陣列;鈦酸鋇;氧化鉿;原子層沉積技術;奈米管狀電容;鐵電性;光電極,zh_TW
dc.subject.keywordAnodized TiO2 nanotube arrays,BaTiO3,HfO2,Atomic layer deposition,Nanotubular capacitor,Ferroelectricity,Photoelectrode,en
dc.relation.page158
dc.rights.note有償授權
dc.date.accepted2015-08-12
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
22.86 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved