Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53000Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 楊德良(Der-Liang Young) | |
| dc.contributor.author | Cheng-Lun Shih | en |
| dc.contributor.author | 施正倫 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:38:30Z | - |
| dc.date.available | 2020-08-16 | |
| dc.date.copyright | 2015-08-16 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-11 | |
| dc.identifier.citation | References
1. R. Lewis, P. Nithiarasu, and K.N. Seetharamu, Fundamentals of the Finite Element Method for Heat and Fluid Flow. 2004: Wiley. 2. C. Taylor and T.G. Hughes, Finite element programming of Navier-Stokes Equations. 1981, Swansea: Pineridge Press. 3. D.L. Young, Finite Element modeling of shallow water wave equations. J Chin Inst Eng, 1991. 14(2): p. 55-143. 4. C.T. Wu and W. Hu, Meshfree-enriched simplex elements with strain smoothing for the finite element analysis of compressible and nearly incompressible solids. Comp Methods Appl Mech Eng, 2011. 200(4546): p. 2991-3010. 5. C.T. Wu, W. Hu, and J.S. Chen, A meshfree-enriched finite element method for compressible and nearincompressible elasticity. Int J Numer Methods Eng, 2012. 90(7): p. 882-914. 6. C.T. Wu, C.K. Park, and J.S. Chen, A generalized approximation for the meshfree analysis of solids. Int J Numer Methods Eng, 2011. 85(6): p. 693-722. 7. H.K. Versteeg, and W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method (2nd Edition). 2007, Prentice Hall. 8. A.N. Brooks, and T.J.R. Hughes, Streamline upwind Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comp Methods Appl Mech Eng, 1982. 32(1-3): p. 199-259. 9. M. Ortiz, and M. Arroyo, Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods. Int J Numer Methods Eng, 2006. 65(13): p. 2167-2202. 10. N. Sukumar, Construction of polygonal interpolants: a maximum entropy approach. Int J Numer Methods Eng, 2004. 61(12): p. 2159-2181. 11. N. Sukumar, and R.W. Wright, Overview and construction of meshfree basis functions: From moving least squares to entropy approximants. Int J Numer Methods Eng, 2007. 70(2): p. 181-205. 12. O.C. Zienkiewicz, J.P. DeSR Gago, and D.W. Kelly, The hierarchical concept in finite element analysis. Comput Struct, 1983. 16(14): p. 53-65. 13. U. Ghia, K.N. Ghia, and C.T. Shin, High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid Method. J Comput Phys 1982. 48: p. 387-411. 14. C.T. Wu, F.L. Yang, and D.L. Young, Application of the method of fundamental solutions and the generalized Lagally theorem to the interaction of solid body and external singularities in an inviscid fluid. CMC-Comput Mat Contin, 2011. 23(2): p. 135-154. 15. C.E. Shannon, A mathematical theory of communication. SIGMOBILE Mob Comput Commun Rev, 2001. 5(1): p. 3-55. 16. C.J. Cyron, M. Arroyo, and M. Ortiz, Smooth, second order, non-negative meshfree approximants selected by maximum entropy. Int J Numer Methods Eng, 2009. 79(13): p. 1605-1632. 17. C.T. Wu, D.L. Young, and H.K. Hong, Adaptive meshless local maximum-entropy finite element method for convection-diffusion problems. Comput. Mech, 2014. 53: p. 189-200. 18. A.J. Chorin, Numerical solution of the Navier-Stokes equations. Math. Comput., 1968. 22: p. 745-762. 19. A.J. Chorin and J.E. Marsen, A Mathematical Introduction to Fluid Mechanics. 1993: Springer-Verlag. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53000 | - |
| dc.description.abstract | 本論文的主旨在於對區域最大熵值有限元素法(local maximum-entropy finite element method)的利用與研究,先將方法用於二維不同Peclet數的穩態的對流擴散問題計算,確認其可行性,接著為了進一步確認其改善,我們把此方法用於奈維爾-史托克斯方程式同時利用運算子拆解法求解,測試各種可能的加密佈點方式,再將之與現有文獻的數據加以比較,確認其因最大熵值有限元素法而提升了精度,最後為了進一步證明此方法能應用於多種幾何場域,再測試了不規則形狀的流場,並以高密度網格之有限元素法求解作為指標,再與使用最大熵值有限元素法之結果加以比較,亦能發現結果與效率有顯著的提升,以證明此方法能夠在複雜幾何流場與高梯度的問題中提升其精度與效率。 | zh_TW |
| dc.description.abstract | This thesis is concerned with the study of local maximum-entropy finite element method (LME-FEM) on flow field problems. On this study the method is first used to solve steady advection-diffusion problems at various Peclet numbers for two-dimensional conditions. After verifying the capability of this method to simulate the advection-diffusion equation, we next apply the scheme to solve Navier-Stokes equations with the operator splitting procedure by a two-step projection method. Testing a variety of refinement method, we tried to demonstrate that the procedure of adding extra points in the elements would increase the accuracy of numerical computation. All the numerical results of this study are compared favorably with the existing reference data. In addition, we further tried to do the same problem of cavity flow but with a hole in the domain. Comparing the results with the mesh independent solution, reasonably good agreements and better efficiency can be observed through present LME-FEM algorithm. It is proved that LME-FEM will increase the efficiency even under the unfavorable conditions of high gradient and complex geometry. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:38:30Z (GMT). No. of bitstreams: 1 ntu-104-R02521308-1.pdf: 6129876 bytes, checksum: 94539aa021e35f47feffafdd9ce6169e (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | Table of Contents
摘要 I Abstract II Table of Contents III List of Tables V List of Figures VII Chapter 1 1 Introduction 1 1.1 Research Objective 1 1.2 Introduction to Finite Element method 3 1.3 Introduction to Local Maximum Entropy concept 4 1.4 Content of the Thesis 6 Chapter 2 9 Adaptive meshless local maximum-entropy finite element method 9 2.1 Finite Element method 10 2.1.1 Brief Introduction 10 2.1.2 Choice of the Weighting Functions 11 2.1.3 Shape functions 13 2.2 Local Maximum Entropy 15 2.2.1 Local Maximum Entropy scheme 15 2.2.2 Formulations of LME-FEM 22 2.2.3 Gauss Quadrature 23 Chapter 3 25 Governing Equations and the Local Maximum Entropy for Solving the Two-dimensional Advection-Diffusion Problems 25 3.1 Governing equation 26 3.2 Numerical scheme 26 3.3 Numerical results 29 Chapter 4 39 Solving the Two-dimensional Flow field Problems by the LME-FEM 39 4.1 Governing equation 39 4.2 Numerical scheme 40 4.3 Numerical results 45 Chapter 5 65 Solving the Two-dimensional Flow Field Problems with Complex Geometry by LME-FEM 65 5.1 Mesh-independent solution 65 5.2 LME-FEM application 69 Chapter 6 73 Conclusions and Future work 73 6.1 Conclusions 73 6.1.1 Advection-diffusion problem 73 6.1.2 Two dimensional Flow Field problem 74 6.2 Future works and suggestions 75 References 77 | |
| dc.language.iso | en | |
| dc.subject | 網格 | zh_TW |
| dc.subject | 最大熵值有限元素法 | zh_TW |
| dc.subject | 有限元素法 | zh_TW |
| dc.subject | 對流擴散 | zh_TW |
| dc.subject | 奈維爾-史托克斯方程式 | zh_TW |
| dc.subject | advection-diffusion | en |
| dc.subject | mesh | en |
| dc.subject | Local maximum-entropy | en |
| dc.subject | Nacier-Stokes equations | en |
| dc.subject | finite element method | en |
| dc.title | 利用區域最大熵值有限元素法求解流場之研究 | zh_TW |
| dc.title | Local Maximum Entropy Finite Element Method for Flow Field Problem | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 廖清標,蔡加正,沈立軒,古孟晃 | |
| dc.subject.keyword | 網格,最大熵值有限元素法,有限元素法,對流擴散,奈維爾-史托克斯方程式, | zh_TW |
| dc.subject.keyword | mesh,Local maximum-entropy,finite element method,advection-diffusion,Nacier-Stokes equations, | en |
| dc.relation.page | 82 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-12 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| Appears in Collections: | 土木工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-104-1.pdf Restricted Access | 5.99 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
