Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5298
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳榮凱
dc.contributor.authorYen-An Chenen
dc.contributor.author陳延安zh_TW
dc.date.accessioned2021-05-15T17:55:21Z-
dc.date.available2014-07-29
dc.date.available2021-05-15T17:55:21Z-
dc.date.copyright2014-07-29
dc.date.issued2014
dc.date.submitted2014-07-15
dc.identifier.citation[Abh56] S. S. Abhyankar, Local uniformization on algebraic surfaces over ground fields of characteristic p neq 0, Ann. of Math. (2) 63 (1956), 491–526.
[Abh66] S. S. Abhyankar, Resolution of singularities of embedded algebraic surfaces, Pure and Applied Mathematics, Vol. 24, Academic Press, New York-London, 1966.
[BCHM10] C. Birkar, P. Cascini, C. D. Hacon, and J. McKernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), no. 2, 405–468.
[Che13] J. A. Chen, Explicit resolution of three dimensional terminal singularities, arXiv preprint arXiv:1310.6445 (2013).
[CP08] V. Cossart and O. Piltant, Resolution of singularities of threefolds in positive characteristic. I. Reduction to local uniformization on Artin-Schreier and purely inseparable coverings, J. Algebra 320 (2008), no. 3, 1051–1082.
[CP09] V. Cossart and O. Piltant, Resolution of singularities of threefolds in positive characteristic. II, J. Algebra 321 (2009), no. 7, 1836–1976.
[CTX13] P. Cascini, H. Tanaka, and C. Xu, On base point freeness in positive characteristic, arXiv preprint arXiv:1305.3502 (2013).
[FJ74] G. Frey and M. Jarden, Approximation theory and the rank of abelian varieties over large algebraic fields, Proc. London Math. Soc. (3) 28 (1974), 112–128.
[Fuj84] T. Fujita, Fractionally logarithmic canonical rings of algebraic surfaces, Journal of the Faculty of Science, The University of Tokyo, Sect. 1 A, Mathematics 30 (1984), no. 3, 685–696.
[Ful93] W. Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993, The William H. Roever Lectures in Geometry.
[Har77] R. Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977, Graduate Texts in Mathematics, No. 52.
[Hir64] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109–203; ibid. (2) 79 (1964), 205–326.
[HW02] N. Hara and K. Watanabe, F-regular and F-pure rings vs. log terminal and log canonical singularities, J. Algebraic Geom. 11 (2002), no. 2, 363–392.
[HX13] C. D. Hacon and C. Xu, On the three dimensional minimal model program in positive characteristic, arXiv preprint arXiv:1302.0298 (2013).
[Kee99] S. Keel, Basepoint freeness for nef and big line bundles in positive characteristic, Ann. of Math. (2) 149 (1999), no. 1, 253–286.
[KM08] J. Koll ́ar and S. Mori, Birational geometry of algebraic varieties, vol. 134, Cambridge University Press, 2008.
[KMM87] Y. Kawamata, K. Matsuda, and K. Matsuki, Introduction to the minimal model problem, Advanced Studies in Pure Math. 10(1987) 10 (1987), 283– 360.
[KSB88] J. Koll ́ar and N. I. Shepherd-Barron, Threefolds and deformations of surface singularities, Invent. Math. 91 (1988), no. 2, 299–338.
[Mat02] K. Matsuki, Introduction to the Mori program, Springer, 2002.
[Mor85] S. Mori, On 3-dimensional terminal singularities, Nagoya Math. J. 98 (1985), 43–66.
[Ray78] M. Raynaud, Contre-exemple au “vanishing theorem” en caracte ́ristique p > 0, C. P. Ramanujam—a tribute, Tata Inst. Fund. Res. Studies in Math., vol. 8, Springer, Berlin-New York, 1978, pp. 273–278.
[Rei83] M. Reid, Minimal models of canonical 3-folds, Algebraic varieties and analytic varieties (Tokyo, 1981), Adv. Stud. Pure Math., vol. 1, North-Holland, Amsterdam, 1983, pp. 131–180.
[Rei87] M. Reid, Young person’s guide to canonical singularities, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 345–414.
[Sho86] V. V. Shokurov, The nonvanishing theorem, Mathematics of the USSR- Izvestiya 26 (1986), no. 3, 591–604.
[Tan12] H. Tanaka, Minimal models and abundance for positive characteristic log surfaces, arXiv preprint arXiv:1201.5699 (2012).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5298-
dc.description.abstract本文分為兩個部分。第一個部分介紹極小模型理論是如何運作的,尤其是在正特徵數的時候。第二個部分,Mori 在特徵數零時對三維 terminal 奇點的分類中,我確定了大部分在正特徵數時,仍然會是 terminal 奇點。zh_TW
dc.description.abstractIn this thesis, there are two parts. The first part is to introduce what the minimal model program (MMP) is and how it works, especially in positive characteristic. Also, I illustrate some differences between characteristic zero and positive characteristic. In the second part, I verify that the classification Mori gave in characteristic zero for the terminal singularities in dimension 3 is mostly true in positive characteristic.en
dc.description.provenanceMade available in DSpace on 2021-05-15T17:55:21Z (GMT). No. of bitstreams: 1
ntu-103-R01221007-1.pdf: 11268199 bytes, checksum: 72f04f29ee29f8d5f6cd12bc829268b5 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
Contents v
List of Figures vii
1. What is MMP ? 1
1.1 Classification ................................ 1
1.2 What is a minimal model? ......................... 2
1.3 Asymptotic Riemann-Roch Theorem.................... 2
2. MMP in characteristic zero 4
2.1 Surface case................................. 4
2.2 Higher dimensional case .......................... 8
3. MMP in positive characteristic 13
3.1 Differences with characteristic zero .................... 13
3.2 F-Singularities................................ 15
3.3 MMP for surfaces.............................. 21
3.4 MMP for 3-folds .............................. 24
4. Resolution for terminal singularities 26
4.1 Characteristic zero ............................. 27
4.2 Cyclic quotient singularities in positive characteristic . . . . . . . . . . . 28
4.2.1 Toric varieties............................ 28
4.2.2 Cyclic quotients .......................... 29
4.3 cAn type singularities............................ 30
4.3.1 n=1................................ 32
4.3.2 n≥2................................ 33
4.3.3 Termination............................. 35
4.4 cA/r type singularities ........................... 38
4.5 cAx/2 and cD type singularities ...................... 40
4.5.1 Settings............................... 40
4.5.2 The base case............................ 42
4.5.3 Inductive step............................ 45
Bibliography 50
dc.language.isoen
dc.subject極小模型理論zh_TW
dc.subjectterminal 奇點zh_TW
dc.subject正特徵數zh_TW
dc.subjectTerminal Singularityen
dc.subjectMinimal Model Programen
dc.subjectPositive Characteristicen
dc.title正特徵數中的極小模型理論zh_TW
dc.titleMinimal Model Program in Positive Characteristicen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳俊成,章源慶
dc.subject.keyword極小模型理論,正特徵數,terminal 奇點,zh_TW
dc.subject.keywordMinimal Model Program,Positive Characteristic,Terminal Singularity,en
dc.relation.page52
dc.rights.note同意授權(全球公開)
dc.date.accepted2014-07-15
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf11 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved