請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52930完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林招松 | |
| dc.contributor.author | Sung-Mao Hung | en |
| dc.contributor.author | 洪崧貿 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:34:35Z | - |
| dc.date.available | 2015-08-16 | |
| dc.date.copyright | 2015-08-16 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-12 | |
| dc.identifier.citation | 1. Massalski, T., Binary alloy phase diagrams.United States of America. ASM International, 2001: p. 2445.
2. Herbstein, F. and B. Averbach, The structure of lithium-magnesium solid solutions—I: Measurements on the Bragg reflections. Acta Metallurgica, 1956. 4(4): p. 407-413. 3. Song, J.-M., T.-X. Wen, and J.-Y. Wang, Vibration fracture properties of a lightweight Mg–Li–Zn alloy. Scripta materialia, 2007. 56(6): p. 529-532. 4. Tsai, H.-K., C.-C. Liao, and F.-K. Chen, Die design for stamping a notebook case with magnesium alloy sheets. journal of materials processing technology, 2008. 201(1): p. 247-251. 5. Kim, W., M. Kim, and J. Wang, Ultrafine-grained Mg–9Li–1Zn alloy sheets exhibiting low temperature superplasticity. Materials Science and Engineering: A, 2009. 516(1): p. 17-22. 6. Liu Xuhe, Du Guanjun, Wu Ruizhi, Niu Zhongyi, Zhang Milin, Deformation and microstructure evolution of a high strain rate superplastic Mg–Li–Zn alloy. Journal of Alloys and Compounds, 2011. 509(39): p. 9558-9561. 7. Song Yingwei, Shan Dayong, Chen Rongshi, Zhang Fan, Han En-Hou, A novel phosphate conversion film on Mg–8.8 Li alloy. Surface and Coatings Technology, 2009. 203(9): p. 1107-1113. 8. Zeng Rong-chang, Sun Xin-xin, Song Ying-wei, Zhang Fen, Li Shuo-qi, Cui Hong-zhi, Han En-hou, Influence of solution temperature on corrosion resistance of Zn-Ca phosphate conversion coating on biomedical Mg-Li-Ca alloys. Transactions of Nonferrous Metals Society of China, 2013. 23(11): p. 3293-3299. 9. Wang, G., N. Cao, and Y. Wang, Characteristics and corrosion studies of zinc–manganese phosphate coatings on magnesium–lithium alloy. RSC Advances, 2014. 4(104): p. 59772-59778. 10. Gao Lili, Zhang Chunhong, Zhang Milin, Huang Xiaomei, Jiang Xi, Phytic acid conversion coating on Mg–Li alloy. Journal of Alloys and Compounds, 2009. 485(1): p. 789-793. 11. Zhang Hua, Yao Guangchun, Wang Shulan, Liu Yihan, Luo Hongjie, A chrome-free conversion coating for magnesium–lithium alloy by a phosphate–permanganate solution. Surface and Coatings Technology, 2008. 202(9): p. 1825-1830. 12. Wang, G., M. Zhang, and R. Wu, Molybdate and molybdate/permanganate conversion coatings on Mg–8.5 Li alloy. Applied Surface Science, 2012. 258(7): p. 2648-2654. 13. Yang Lihui, Zhang Milin, Li Junqing, Yu Xiang, Niu Zhongyi, Stannate conversion coatings on Mg–8Li alloy. Journal of Alloys and Compounds, 2009. 471(1): p. 197-200. 14. Ma Yibin, Li Ning, Li Deyu, Zhang Milin, Huang Xiaomei, Characteristics and corrosion studies of vanadate conversion coating formed on Mg–14wt% Li–1wt% Al–0.1 wt% Ce alloy. Applied Surface Science, 2012. 261: p. 59-67. 15. Yang Xiaowei, Wang Guixiang, Dong Guojun, Gong Fan, Zhang Milin, Rare earth conversion coating on Mg–8.5 Li alloys. Journal of Alloys and Compounds, 2009. 487(1): p. 64-68. 16. Yang Lihui, Li Junqing, Yu Xiang, Zhang Milin, Huang Xiaomei, Lanthanum-based conversion coating on Mg–8Li alloy. Applied Surface Science, 2008. 255(5): p. 2338-2341. 17. Song Dalei, Jing Xiaoyan, Wang Jun, Lu Shanshan, Yang Piaoping, Wang Yanli, Zhang Milin, Microwave-assisted synthesis of lanthanum conversion coating on Mg–Li alloy and its corrosion resistance. Corrosion Science, 2011. 53(11): p. 3651-3656. 18. R.W. Cahn, P.H., E.J. Kramer and K.H. Matucha, Structure and Properties of Nonferrous Alloys. Materials Science and Technology, 1996. 8: p. 117-212. 19. Sanschagrin A., Tremblay R., Angers R., Dube D., Mechanical properties and microstructure of new magnesium—lithium base alloys. Materials Science and Engineering: A, 1996. 220(1): p. 69-77. 20. Wu, R., Z. Qu, and M. Zhang, Effects of the addition of Y in Mg–8Li–(1, 3) Al alloy. Materials Science and Engineering: A, 2009. 516(1): p. 96-99. 21. Nayeb-Hashemi, A.A., Phases Diagrams of Binary Magnesium Alloy. 1998: p. 184-194. 22. J. A. Jensen, Physical Metallurgy and Materials Science, 1998. 29A. 23. Chiu, C.-H., J.-Y. Wang, and H.-Y. Wu, Microstructural characterization of a Mg-9% Li-1% Zn alloy. Materials Transactions, 2006. 47(4): p. 966-970. 24. Metenier P., González-Doncel Gaspar, Ruano Oscar Antonio, Wolfenstine J., Sherby O.D., Superplastic behavior of a fine-grained two-phase Mg-9wt.% Li alloy. Materials Science and Engineering: A, 1990. 125(2): p. 195-202. 25. Takuda H., Enami T., Kubota K., Hatta N., The formability of a thin sheet of Mg–8.5 Li–1Zn alloy. Journal of Materials Processing Technology, 2000. 101(1): p. 281-286. 26. Chang Tien-Chan, Wang Jian-Yih, Chu Chun-Len, Lee Shyong, Mechanical properties and microstructures of various Mg–Li alloys. Materials Letters, 2006. 60(27): p. 3272-3276. 27. 楊智超, 鎂合金材料特性及新製程發展. 工業材料, 1999. 152. 28. 戴光勇, 鎂合金表面處理技術(上). 材料與社會, 1988. 24. 29. 戴光勇, 鎂合金表面處理技術(上). 材料與社會, 1989. 25. 30. A. J. Bard, Electrochemical Methods, Fundamentals and Applications, 2nd ed. John Wiley & Sons, Inc. press, 2001. 31. McIntyre, N. and C. Chen, Role of impurities on Mg surfaces under ambient exposure conditions. Corrosion science, 1998. 40(10): p. 1697-1709. 32. Nordlien Jan Halvor, Ono Sachiko, Masuko Noburo, Nis Kemal, Morphology and structure of oxide films formed on magnesium by exposure to air and water. Journal of the Electrochemical Society, 1995. 142(10): p. 3320-3322. 33. Pourbaix, M., NACE, 1974. 34. Makar, G. and J. Kruger, Corrosion of magnesium. International Materials Reviews, 1993. 38(3): p. 138-153. 35. Baril, G. and N. Pebere, The corrosion of pure magnesium in aerated and deaerated sodium sulphate solutions. Corrosion Science, 2001. 43(3): p. 471-484. 36. Song, G. and D. StJohn, Corrosion behaviour of magnesium in ethylene glycol. Corrosion Science, 2004. 46(6): p. 1381-1399. 37. El-Taib Heakal, F., N. Tantawy, and O. Shehata, Impact of chloride and fluoride additions on surface reactivity and passivity of AM60 magnesium alloy in buffer solution. Corrosion Science, 2012. 64: p. 153-163. 38. Zhang Chunhong, Huang Xiaomei, Zhang Milin, Gao Lili, Wu Reizhi, Electrochemical characterization of the corrosion of a Mg–Li alloy. Materials Letters, 2008. 62(14): p. 2177-2180. 39. Gao Lili, Zhang Chunhong, Zhang Milin, Huang Xiaomei, Sheng Nan, The corrosion of a novel Mg–11Li–3Al–0.5 RE alloy in alkaline NaCl solution. Journal of Alloys and Compounds, 2009. 468(1): p. 285-289. 40. Ohin, P., Binary Alloy Phase Diagrams. American Society for Metals, 1986. 41. Song, G., A. Atrens, and M. Dargusch, Influence of microstructure on the corrosion of diecast AZ91D. Corrosion science, 1998. 41(2): p. 249-273. 42. Ballerini Gaia, Bardi Ugo, Bignucolo Roberto, Ceraolo Giuseppe, About some corrosion mechanisms of AZ91D magnesium alloy. Corrosion Science, 2005. 47(9): p. 2173-2184. 43. Ambat, R., N.N. Aung, and W. Zhou, Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy. Corrosion science, 2000. 42(8): p. 1433-1455. 44. Baril, G., C. Blanc, and N. Pébère, AC impedance spectroscopy in characterizing time-dependent corrosion of AZ91 and AM50 magnesium alloys characterization with respect to their microstructures. Journal of the Electrochemical Society, 2001. 148(12): p. B489-B496. 45. Song Yingwei, Shan Dayong, Chen Rongshi, Han En-Hou, Corrosion characterization of Mg–8Li alloy in NaCl solution. Corrosion Science, 2009. 51(5): p. 1087-1094. 46. Chang Jian-Wei, Guo Xing-Wu, Fu Peng-Huai, Peng Li-Ming, Ding Wen-Jiang, Effect of heat treatment on corrosion and electrochemical behaviour of Mg–3Nd–0.2 Zn–0.4 Zr (wt.%) alloy. Electrochimica Acta, 2007. 52(9): p. 3160-3167. 47. Song Yingwei, Shan Dayong, Chen Rongshi, Han En-Hou, Effect of second phases on the corrosion behaviour of wrought Mg–Zn–Y–Zr alloy. Corrosion Science, 2010. 52(5): p. 1830-1837. 48. Li J.F., Zheng Z.Q., Li S.C., Ren W.D., Zhang Z., Preparation and galvanic anodizing of a Mg–Li alloy. Materials Science and Engineering: A, 2006. 433(1): p. 233-240. 49. Huang, C.A., C.K. Lin, and Y.H. Yeh, The corrosion and wear resistances of magnesium alloy (LZ91) electroplated with copper and followed by 1μm-thick chromium deposits. Thin Solid Films, 2011. 519(15): p. 4774-4780. 50. Luo Hong-Jie, Song Bin-Na, Liu Yi-Han, Yao Guang-Chun, Electroless Ni-P plating on Mg-Li alloy by two-step method. Transactions of Nonferrous Metals Society of China, 2011. 21(10): p. 2225-2230. 51. Gray, J. and B. Luan, Protective coatings on magnesium and its alloys—a critical review. Journal of alloys and compounds, 2002. 336(1): p. 88-113. 52. Sharma, A.K., 1989. Met. Finish.: p. 73-74. 53. I. Azkarate, Alternatives to Cr(VI) conversion coatings for magnesium alloys. International Congress Magnesium Alloys and their Application, 2000. 54. 楊聰仁, 工業材料雜誌, 2001. 174. 55. Zhou Wanqiu, Shan Dayong, Han En-Hou, Ke Wei, Structure and formation mechanism of phosphate conversion coating on die-cast AZ91D magnesium alloy. Corrosion Science, 2008. 50(2): p. 329-337. 56. Song Yingwei, Shan Dayong, Chen Rongshi, Zhang Fan, Han En-Hou, Formation mechanism of phosphate conversion film on Mg–8.8 Li alloy. Corrosion Science, 2009. 51(1): p. 62-69. 57. Lin C.S., Lee C.Y., Li W.C., Chen Y.S., Fang G.N., Formation of phosphate/permanganate conversion coating on AZ31 magnesium alloy. Journal of The Electrochemical Society, 2006. 153(3): p. B90-B96. 58. Lee Y.L., Chu Y.R., Li W.C., Lin C.S., Effect of permanganate concentration on the formation and properties of phosphate/permanganate conversion coating on AZ31 magnesium alloy. Corrosion Science, 2013. 70: p. 74-81. 59. Lin C.S., Lin H.C., Lin K.M., Lai W.C., Formation and properties of stannate conversion coatings on AZ61 magnesium alloys. Corrosion Science, 2006. 48(1): p. 93-109. 60. Zucchi F., Frignani A., Grassi V., Trabanelli G., Monticelli C., Stannate and permanganate conversion coatings on AZ31 magnesium alloy. Corrosion Science, 2007. 49(12): p. 4542-4552. 61. Elsentriecy, H.H., K. Azumi, and H. Konno, Effects of pH and temperature on the deposition properties of stannate chemical conversion coatings formed by the potentiostatic technique on AZ91 D magnesium alloy. Electrochimica Acta, 2008. 53(12): p. 4267-4275. 62. Huang, Y., Y. Lee, and C. Lin, Acid pickling pretreatment and stannate conversion coating treatment of AZ91D magnesium alloy. Journal of The Electrochemical Society, 2011. 158(9): p. C310-C317. 63. Lee Y.L., Chu Y.R., Chen F.J., Lin C.S., Mechanism of the formation of stannate and cerium conversion coatings on AZ91D magnesium alloys. Applied Surface Science, 2013. 276: p. 578-585. 64. Dabala Manuele, Brunelli Katya, Napolitani Enrico, Magrini Maurizio, Cerium-based chemical conversion coating on AZ63 magnesium alloy. Surface and Coatings Technology, 2003. 172(2): p. 227-232. 65. Montemor, M., A. Simoes, and M. Carmezim, Characterization of rare-earth conversion films formed on the AZ31 magnesium alloy and its relation with corrosion protection. Applied Surface Science, 2007. 253(16): p. 6922-6931. 66. Ardelean, H., I. Frateur, and P. Marcus, Corrosion protection of magnesium alloys by cerium, zirconium and niobium-based conversion coatings. Corrosion Science, 2008. 50(7): p. 1907-1918. 67. Wang Cheng, Zhu Shenglong, Jiang Feng, Wang Fuhui, Cerium conversion coatings for AZ91D magnesium alloy in ethanol solution and its corrosion resistance. Corrosion Science, 2009. 51(12): p. 2916-2923. 68. Rudd, A.L., C.B. Breslin, and F. Mansfeld, The corrosion protection afforded by rare earth conversion coatings applied to magnesium. Corrosion science, 2000. 42(2): p. 275-288. 69. C. S. Lin and S. K. Fang, Formation of Cerium Conversion Coatings on AZ31 Magnesium Alloys. J. Electrochem. Soc., 2005. 152: p. B54-59. 70. Lin, C.-S. and W.-J. Li, Corrosion resistance of cerium-conversion coated AZ31 magnesium alloys in cerium nitrate solutions. Materials transactions, 2006. 47(4): p. 1020-1025. 71. Brunelli, Katya, Dabala Manuele, Calliari Irene, Magrini Maurizio, Effect of HCl pre-treatment on corrosion resistance of cerium-based conversion coatings on magnesium and magnesium alloys. Corrosion Science, 2005. 47(4): p. 989-1000. 72. Su, H., W. Li, and C. Lin, Effect of acid pickling pretreatment on the properties of cerium conversion coating on AZ31 magnesium alloy. Journal of The Electrochemical Society, 2012. 159(5): p. C219-C225. 73. Lee, Y., F. Chen, and C. Lin, Corrosion resistance studies of cerium conversion coating with a fluoride-free pretreatment on AZ91D magnesium alloy. Journal of The Electrochemical Society, 2013. 160(1): p. C28-C35. 74. Yu, B., X. Pan, and J. Uan, Enhancement of corrosion resistance of Mg-9 wt.% Al-1 wt.% Zn alloy by a calcite (CaCO3) conversion hard coating. Corrosion Science, 2010. 52(5): p. 1874-1878. 75. Song Guangling, Atrens Andrej, John D. St, Wu Xianliang, Nairn Jason, The anodic dissolution of magnesium in chloride and sulphate solutions. Corrosion Science, 1997. 39(10): p. 1981-2004. 76. Song, Guangling, Atrens Andrej, Stjohn D., Nairn Jason, Li Ying, The electrochemical corrosion of pure magnesium in 1 N NaCl. Corrosion Science, 1997. 39(5): p. 855-875. 77. Yang Lihui, Li Junqing, Zheng Yanzhen, Jiang Weiwei, Zhang Milin, Electroless Ni–P plating with molybdate pretreatment on Mg–8Li alloy. Journal of Alloys and Compounds, 2009. 467(1): p. 562-566. 78. G., Soc. Chim., 1864. 1: p. 89. 79. Polissar, M.J., The kinetics of the reaction between permanganate and manganous ions. The Journal of Physical Chemistry, 1935. 39(8): p. 1057-1066. 80. Tompkins, F., The kinetics of the reaction between manganous and permanganate ions. Transactions of the Faraday Society, 1942. 38: p. 131-139. 81. Adamson, A.W., The Kinetics of the Manganous–Permanganate Reaction. The Journal of Physical Chemistry, 1951. 55(2): p. 293-303. 82. Happe, J.A. and D.S. Martin Jr, Isotopic Exchange of Manganese during the Reaction between Manganese (II) and Permanganate1, 2. Journal of the American Chemical Society, 1955. 77(16): p. 4212-4217. 83. Desideri, P.G., High oxidation states of manganese in sulphuric acid and caustic alkali media. Journal of Electroanalytical Chemistry (1959), 1962. 4(6): p. 359-368. 84. Kalra, H., Ghosh, S, Z. Phys. Chem., 1966. 231: p. 21. 85. Morrow, J.I. and S. Perlman, Kinetic study of the permanganate-manganous ion reaction to form manganic ion in sulfuric acid media. Inorganic Chemistry, 1973. 12(10): p. 2453-2455. 86. Orban, M. and I.R. Epstein, Systematic design of chemical oscillators. 59. Minimal permanganate oscillator: the Guyard reaction in a CSTR. Journal of the American Chemical Society, 1989. 111(22): p. 8543-8544. 87. Orban, M. and I.R. Epstein, Systematic design of chemical oscillators. 62. The minimal permanganate oscillator and some derivatives: oscillatory oxidation of S2O32-, SO32-, and S2-by permanganate in a CSTR. Journal of the American Chemical Society, 1990. 112(5): p. 1812-1817. 88. Doona Christopher J., Kustin Kenneth, Orban Miklos, Epstein Irving R., Systematic design of chemical oscillators. 74. Newly designed permanganate-reductant chemical oscillators. Journal of the American Chemical Society, 1991. 113(20): p. 7484-7489. 89. Pimienta V., Lavabre D., Levy G., Micheau J.C., Reactivity of the Mn (III) and Mn (IV) intermediates in the permanganate/oxalic acid/sulfuric acid reaction: Kinetic determination of the reducing species. The Journal of Physical Chemistry, 1994. 98(50): p. 13294-13299. 90. Pimienta V., Lavabre D., Levy G., Micheau J.C., Kinetic modeling of the KMnO4/H2C2O4/H2SO4 reaction: origin of the bistability in a CSTR. The Journal of Physical Chemistry, 1995. 99(39): p. 14365-14371. 91. Kovács Krisztián A., Gróf Pál, Burai László, Riedel Miklós, Revising the mechanism of the permanganate/oxalate reaction. The Journal of Physical Chemistry A, 2004. 108(50): p. 11026-11031. 92. Standard, A., Standars Test Methods for Measuring Adhesion by Tape Test. D3359-09E02, 2009. 93. 李偉任, AZ31鎂合金硝酸鈰化成皮膜結構與性質研究. 台灣大學博士論文, 96年七月. 94. Standard, A., B117-03. Standard Practice for Operating Salt Spray (Fog) Apparatus. American Society of Testing and Materials, ASTM International, Philadelphia, USA, 2003. 95. Standard, A., D610-08. Standard Practice for Evaluating Degree of Rusting on Painted Steel Surface. American Society of Testing and Materials, ASTM International, Philadelphia, USA, 2003. 96. Mark E. Orazem and Bernard Tribollet, Electrochemical Impedance Spectroscopy. John Wiley & Sons, Inc. press, 2008. 97. Jorcin Jean-Baptiste, Orazem Mark E., Pébère Nadine, Tribollet Bernard, CPE analysis by local electrochemical impedance spectroscopy. Electrochimica Acta, 2006. 51(8): p. 1473-1479. 98. Baril Geneviève, Galicia Gonzalo, Deslouis Claude, Pébère Nadine, Tribollet Bernard, Vivier Vincent, An impedance investigation of the mechanism of pure magnesium corrosion in sodium sulfate solutions. Journal of the Electrochemical Society, 2007. 154(2): p. C108-C113. 99. Galicia Gonzalo, Pébère Nadine, Tribollet Bernard, Vivier Vincent, Local and global electrochemical impedances applied to the corrosion behaviour of an AZ91 magnesium alloy. Corrosion Science, 2009. 51(8): p. 1789-1794. 100. Hirschorn Bryan, Orazem Mark E., Tribollet Bernard, Vivier Vincent, Frateur Isabelle, Musiani Marco, Determination of effective capacitance and film thickness from constant-phase-element parameters. Electrochimica Acta, 2010. 55(21): p. 6218-6227. 101. Brug G.J., Van Den Eeden A.L.G., Sluyters-Rehbach M., Sluyters J.H., The analysis of electrode impedances complicated by the presence of a constant phase element. Journal of electroanalytical chemistry and interfacial electrochemistry, 1984. 176(1): p. 275-295. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52930 | - |
| dc.description.abstract | LZ91雙相鎂合金相較於傳統AZ系列鎂合金,其密度更低且質量更輕,再加上其具有較佳的機械加工性以及延展性,使其在結構件上的應用逐漸被重視。但是由於LZ91雙相微結構所誘發的伽凡尼效應導致其耐蝕性更差而限縮使用範圍。因此本研究以錳酸鹽化成處理於底材表面披覆一層鈍化層冀以提升材料整體抗蝕能力,同時調控溶液溫度以尋求擁有最佳抗蝕能力之參數。
為了解化成溶液溫度以及底材雙相效應對於過錳酸鹽化成皮膜披覆於LZ91鎂合金的性質與成膜機制以及其抗蝕能力之影響,本研究之化成溶液為0.1M過錳酸鉀並以濃硫酸調至pH=1.5,再將LZ91底材分別浸泡於不同溫度(15℃、25℃、40℃、60℃)溶液中進行10 s化成反應。皮膜之表面形貌及橫截面微結構是藉由掃描式電子顯微鏡與穿透式電子顯微鏡觀測而得。皮膜之組成成分則是以化學分析電子光譜儀以及歐傑電子能譜儀測得。皮膜抗蝕能力之評估是以動電位極化曲線、交流頻譜阻抗分析及鹽霧試驗機檢測而得。實驗結果顯示經不同溫度化成反應所製得之皮膜均由MgO, MnOx, Mg(OH)2所組成,其顯示化成反應中鎂鋰金屬之氧化/溶出即伴隨著過錳酸根之還原而形成錳氧化物沉積於皮膜中。皮膜厚度則隨著化成溫度升高而有逐漸減薄之趨勢。此外,15℃條件下化成之皮膜佈滿脫水裂紋,影響其抗蝕能力之表現,隨著化成溫度逐漸升高,脫水裂紋也明顯被抑制之現象。鹽霧試驗結果顯示,四組參數下所製得之皮膜均能通過12小時鹽霧試驗。最後,極化曲線以及交流頻譜阻抗則顯示,於溫度40℃條件下化成之皮膜擁有最佳之抗蝕能力。此外,經由底材浸泡於不同溫度化成溶液中析氫測試之結果顯示,提高化成溶液溫度有助於成膜反應加快,且皮膜鈍化表現較佳。然而,經由橫截面觀察結果顯示,本研究採用之酸性化成系統由於其反應性極高,在雙相底材上快速驅動界面pH值上升並促使成膜反應發生,因此可以抑制底材雙相效應對於皮膜不均的影響,使皮膜短時間內能較有效地於底材表面全面披覆。 | zh_TW |
| dc.description.abstract | LZ series magnesium alloys have lower density and better formability than AZ magnesium alloys that have found many applications. The LZ magnesium alloys are thus potential for structural applications. However, the LZ alloy has poor corrosion resistance resulting from galvanic corrosion prevailing in the and phase. This study, therefore, aimed at developing a permanganate conversion solution for LZ91 alloys. Moreover, the effect of conversion bath temperature was detailed so as to prepare the permanganate conversion coating effectively enhancing the corrosion resistance of LZ91 alloys.
Permanganate conversion coatings were formed on LZ91 alloys in the permanganate solution with pH value of 1.5 at different temperatures, 15℃、25℃、40℃、60℃, respectively. The surface and cross-section morphology of the permanganate coating were investigated by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). XPS and Auger spectroscopy were employed to measure the composition of the permanganate coating. The corrosion resistance of the permanganate-coated LZ91 alloys was measured by potentiodynamic polarization, EIS, and salt spray tests. Results show that the permanganate coating was composed of MgO, MnO2, and Mg(OH)2 , indicating that permanganate ions was reduced to manganese oxides when magnesium and lithium were oxidized and dissolved. The thickness of the permanganate coating decreased with increasing bath temperature. the permanganate coating formed at 15℃ was relatively thick and suffered severe cracking after dehydration. Increasing permanganate bath temperature retarded the growth of the permanganate coating and coating thus formed had better corrosion resistance. Although the permanganate-coated LZ91 sustained after 12h of the salt spray test regardless of the permanganate bath temperature, the EIS and polarization measurements showed that the coatings formed at 40℃ afforded better protection over the LZ91 alloy. Finally, hydrogen evolution experiment showed that elevating permanganate bath temperature promoted the reaction and optimized the passivation of the coating. Nevertheless, the effect of dual phase induced galvanic corrosion on the conversion mechanism was not notable in such a strongly acidic solution. A full coverage of permanganate coating on the LZ91 alloy can be obtained in a short term of conversion treatment. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:34:35Z (GMT). No. of bitstreams: 1 ntu-104-R02527021-1.pdf: 7707007 bytes, checksum: 655f44c4c9cd0a47d10c004e50f79519 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口委審定書…………………………………………………………..…..i
致謝……………………………………………………………………..ii 摘要…………………………………………………………………....iv Abstract………………………………………………………………..v 總目錄……………………………………………..………………….vii 圖目錄………………………………………………………………….xi 表目錄………………………………………………………………...xiv 第一章 前言……………………………………………………………..1 第二章 文獻回顧………………………………………………………..2 2-1 鎂合金的特性與分類……………………………………………….2 2-1-1 鎂合金的性質…………………………………………………….2 2-1-2 鎂合金的種類……………………………………………….6 2-2 鎂合金的腐蝕行為………………………………………………….7 2-2-1 純鎂金屬之腐蝕行為……………………………………….7 2-2-2 鎂合金之腐蝕行為………………………………………...10 2-3鎂合金的防蝕技術…………………………………………………12 2-3-1 陽極氧化處理……………………………………………...12 2-3-2 電鍍/無電鍍處理…………………………………………..13 2-3-3 物理氣相沉積處理………………………………………...13 2-3-4 化成處理…………………………………………………...14 2-3-4-1 鉻酸鹽化成處理……………………………………14 2-3-4-2 磷酸/錳酸鹽化成處理……………………………...15 2-3-4-3 錫酸鹽化成處理……………………………………15 2-3-4-4 稀土金屬鹽化成處理………………………………16 2-3-5 鎂合金兩相效應對於化成機制之影響…………………...17 2-4 鎂合金負差值效應………………………………………………...19 2-5 Guyard reaction……………………………………………………..21 第三章 實驗方法及步驟………………………………………………23 3-1 製程說明…………………………………………………………...23 3-2材料來源及分析……………………………………………………23 3-3 實驗流程…………………………………………………………...23 3-4 製程條件與溶液配方……………………………………………...25 3-5 化成皮膜性質觀察與量測………………………………………...25 3-5-1 化成皮膜巨觀顏色觀察…………………………………...25 3-5-2 化成皮膜附著性量測……………………………………...25 3-6 化成皮膜微結構分析……………………………………………...27 3-6-1 掃描式電子顯微鏡觀察和分析…………………………...27 3-6-2 穿透式電子顯微鏡觀察及分析…………………………...28 3-7 化成皮膜抗蝕性評估……………………………………………...30 3-7-1 開路電位量測……………………………………………...30 3-7-2 極化曲線量測……………………………………………...30 3-7-3 交流阻抗分析……………………………………………...31 3-7-4 鹽霧試驗分析……………………………………………...32 3-8 化成皮膜表面分析………………………………………………...34 3-8-1 X-ray 光電子能譜分析…………………………………….34 3-9 雙相效應研究……………………………………………………...34 3-9-1 實驗流程…………………………………………………...35 3-10 溫度效應研究…………………………………………………….36 3-10-1 實驗流程………………………………………………….36 第四章 實驗結果與討論………………………………………………38 4-1 皮膜結構特性觀察及組成分析…………………………………...38 4-1-1 巨觀皮膜表面色澤………………………………………...38 4-1-2 皮膜表面微結構形貌與元素組成分析…………………...39 4-1-3 皮膜橫截面微結構形貌…………………………………...41 4-1-4 皮膜組成分析……………………………………………...45 4-2 皮膜抗蝕性評估…………………………………………………...53 4-2-1 極化曲線量測……………………………………………...53 4-2-2 交流阻抗量測……………………………………………...58 4-2-3 鹽霧試驗量測……………………………………………...64 4-3 皮膜附著性評估…………………………………………………...65 4-4 兩相效應對於化成反應之影響…………………………………...66 4-4-1 LZ91鎂合金雙相微結構觀察……………………………...66 4-4-2 雙相對於氫氣生成位置之影響…………………………...68 4-4-3 雙相對於皮膜成長之影響………………………………...70 4-4-4 短時間化成後雙相上皮膜縱深成分分析………………...75 4-5 溫度效應對於化成反應之影響…………………………………..77 4-5-1 底材於不同溶液與溫度下之析氫測試…………………...77 4-5-2 底材於各參數化成系統之開路電位量測………………...82 4-6 綜合討論…………………………………………………………...84 第五章 結論……………………………………………………...…….87 第六章 參考文獻………………………………………………………88 | |
| dc.language.iso | zh-TW | |
| dc.subject | 化成處理 | zh_TW |
| dc.subject | 過錳酸鹽化成皮膜 | zh_TW |
| dc.subject | LZ91鎂合金 | zh_TW |
| dc.subject | 雙相效應 | zh_TW |
| dc.subject | 溫度效應 | zh_TW |
| dc.subject | permanganate conversion coating | en |
| dc.subject | conversion coating treatment | en |
| dc.subject | LZ91 | en |
| dc.subject | dual phase effect | en |
| dc.subject | temperature effect | en |
| dc.title | LZ91鎂合金之過錳酸鹽皮膜微結構與耐蝕性質 | zh_TW |
| dc.title | Microstructure and corrosion resistance of permanganate conversion coating on LZ91 magnesium alloy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 莊東漢,葛明德,汪俊延,李岳聯 | |
| dc.subject.keyword | 化成處理,過錳酸鹽化成皮膜,LZ91鎂合金,雙相效應,溫度效應, | zh_TW |
| dc.subject.keyword | conversion coating treatment,permanganate conversion coating,LZ91,dual phase effect,temperature effect, | en |
| dc.relation.page | 95 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-12 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 7.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
