請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52925
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 戴桓青(Hwan-Ching Tai) | |
dc.contributor.author | Hui-Ting Chen | en |
dc.contributor.author | 陳蕙婷 | zh_TW |
dc.date.accessioned | 2021-06-15T16:34:19Z | - |
dc.date.available | 2015-08-19 | |
dc.date.copyright | 2015-08-19 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-12 | |
dc.identifier.citation | 1. Jessell, T.M., and Kandel, E.R. (1993). Synaptic transmission: a bidirectional and self-modifiable form of cell-cell communication. Cell 72, 1-30.
2. Brodal, P. (2010). The central nervous system : structure and function, 4th Edition, (New York: Oxford University Press) 19-26. 3. Araque, A., Parpura, V., Sanzgiri, R.P., and Haydon, P.G. (1999). Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci. 22, 208-215. 4. Koob, A. (2009). The root of thought : unlocking glia--the brain cell that will help us sharpen our wits, heal injury, and treat brain disease, (Upper Saddle River, N.J.: FT Press). 5. Ramón y Cajal, S. (1909). Histologie du système nerveux de l'homme & des vertébrés Volume 1, (Paris: Maloine). 6. Rizzoli, S.O., and Betz, W.J. (2005). Synaptic vesicle pools. Nat. Rev. Neurosci. 6, 57-69. 7. Takayasu, Y., Iino, M., Takatsuru, Y., Tanaka, K., and Ozawa, S. (2009). Functions of glutamate transporters in cerebellar Purkinje cell synapses. Acta Physiol. 197, 1-12. 8. Christoph, B. (2012). Development of Fluorescence Activated Synaptosome Sorting (FASS) and analysis of VGLUT1 synapses from mouse brain. In Faculty of Biology, Doctoral Dissertation. (Georg August University Göttingen). 9. Berchtold, N.C., and Cotman, C.W. (1998). Evolution in the conceptualization of dementia and Alzheimer's disease: Greco-Roman period to the 1960s. Neurobiol. Aging 19, 173-189. 10. Smith, A.D. (2006). Prevention of dementia: a role for B vitamins? Nutr. Health 18, 225-226. 11. Thies, W., Bleiler, L., and Alzheimer's, A. (2013). 2013 Alzheimer's disease facts and figures. Alzheimers Dement 9, 208-245. 12. Hebert, L.E., Weuve, J., Scherr, P.A., and Evans, D.A. (2013). Alzheimer disease in the United States (2010-2050) estimated using the 2010 census. Neurology 80, 1778-1783. 13. Arendt, T. (2009). Synaptic degeneration in Alzheimer's disease. Acta Neuropathol. 118, 167-179. 14. Braak, H., and Braak, E. (1991). Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82, 239-259. 15. Kretzschmar, H. (2009). Brain banking: opportunities, challenges and meaning for the future. Nat. Rev. Neurosci. 10, 70-78. 16. de Calignon, A., Polydoro, M., Suarez-Calvet, M., William, C., Adamowicz, D.H., Kopeikina, K.J., Pitstick, R., Sahara, N., Ashe, K.H., Carlson, G.A., et al. (2012). Propagation of tau pathology in a model of early Alzheimer's disease. Neuron 73, 685-697. 17. Brundin, P., Melki, R., and Kopito, R. (2010). Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat. Rev. Mol. Cell Biol. 11, 301-307. 18. Liu, L., Drouet, V., Wu, J.W., Witter, M.P., Small, S.A., Clelland, C., and Duff, K. (2012). Trans-synaptic spread of tau pathology in vivo. PloS one 7, e31302. 19. Clavaguera, F., Bolmont, T., Crowther, R.A., Abramowski, D., Frank, S., Probst, A., Fraser, G., Stalder, A.K., Beibel, M., Staufenbiel, M., et al. (2009). Transmission and spreading of tauopathy in transgenic mouse brain. Nat. Cell Biol. 11, 909-913. 20. Mohamed, N.V., Herrou, T., Plouffe, V., Piperno, N., and Leclerc, N. (2013). Spreading of tau pathology in Alzheimer's disease by cell-to-cell transmission. Eur. J. Neurosci. 37, 1939-1948. 21. Hollingsworth, E.B., McNeal, E.T., Burton, J.L., Williams, R.J., Daly, J.W., and Creveling, C.R. (1985). Biochemical characterization of a filtered synaptoneurosome preparation from guinea pig cerebral cortex: cyclic adenosine 3':5'-monophosphate-generating systems, receptors, and enzymes. J. Neurosci. 5, 2240-2253. 22. Gray, E.G., and Whittaker, V.P. (1962). The isolation of nerve endings from brain: an electron-microscopic study of cell fragments derived by homogenization and centrifugation. J. Anat. 96, 79-88. 23. Dunkley, P.R., Jarvie Pe Fau - Robinson, P.J., and Robinson, P.J. A rapid Percoll gradient procedure for preparation of synaptosomes. Nat. Protoc. 3, 1718-1728. 24. Hill, R.M., and Bruzek, V.E. (1970). Apparatus for collecting fractions from density differential interfaces and its use in gravimetric measurement of total myelin. Clin. Chem. 16, 171-176. 25. Lathia, D., and Wesemann, W. (1975). Serotonin uptake and release by biochemically characterized nerve endings isolated from rat brain by concomitant flotation and sedimentation centrifugation. J. Neural Transm. 37, 111-126. 26. Whittaker, V.P. (1993). Thirty years of synaptosome research. J. Neurocytol. 22, 735-742. 27. Wolf, M.E., and Kapatos, G. (1989). Flow cytometric analysis and isolation of permeabilized dopamine nerve terminals from rat striatum. J. Neurosci. 9, 106-114. 28. Dubois, C., Manuguerra, J.C., Hauttecoeur, B., and Maze, J. (1990). Monoclonal antibody A2B5, which detects cell surface antigens, binds to ganglioside GT3 (II3 (NeuAc)3LacCer) and to its 9-O-acetylated derivative. J. Biol. Chem. 265, 2797-2803. 29. Wolf, M.E., LeWitt, P.A., Bannon, M.J., Dragovic, L.J., and Kapatos, G. (1991). Effect of aging on tyrosine hydroxylase protein content and the relative number of dopamine nerve terminals in human caudate. J. Neurochem. 56, 1191-1200. 30. Wolf, M.E., and Kapatos, G. (1989). Flow cytometric analysis of rat striatal nerve terminals. J. Neurosci. 9, 94-105. 31. Wolf, M.E., Granneman, J.G., and Kapatos, G. (1991). Characterization of the distribution of G alpha o in rat striatal synaptosomes and its colocalization with tyrosine hydroxylase. Synapse 9, 66-74. 32. Dodd, P.R., Hardy, J.A., Oakley, A.E., Edwardson, J.A., Perry, E.K., and Delaunoy, J.P. (1981). A rapid method for preparing synaptosomes: comparison, with alternative procedures. Brain Res. 226, 107-118. 33. Gylys, K.H., Fein, J.A., and Cole, G.M. (2000). Quantitative characterization of crude synaptosomal fraction (P-2) components by flow cytometry. J. Neurosci. 61, 186-192. 34. Gylys, K.H., Fein, J.A., Tan, A.M., and Cole, G.M. (2003). Apolipoprotein E enhances uptake of soluble but not aggregated amyloid-β protein into synaptic terminals. J. Neurochem. 84, 1442-1451. 35. Fein, J.A., Sokolow, S., Miller, C.A., Vinters, H.V., Yang, F., Cole, G.M., and Gylys, K.H. (2008). Co-localization of amyloid beta and tau pathology in Alzheimer's disease synaptosomes. Am. J. Pathol. 172, 1683-1692. 36. Biesemann, C., Gr?nborg, M., Luquet, E., Wichert, S.P., Bernard, V., Bungers, S.R., Cooper, B., Varoqueaux, F., Li, L., Byrne, J.A., et al. (2014). Proteomic screening of glutamatergic mouse brain synaptosomes isolated by fluorescence activated sorting. EMBO J. 33, 157-170. 37. Garty, H., and Karlish, S.J. (2006). Role of FXYD proteins in ion transport. Annu. Rev. Physiol. 68, 431-459. 38. Geering, K. (2006). FXYD proteins: new regulators of Na-K-ATPase. Am. J. Physiol. Renal Physiol. 290, 241-250. 39. Byrne, J.A., Mattei, M.-G., and Basset, P. (1996). Definition of the Tumor Protein D52 (TPD52) Gene Family through Cloning of D52Homologues in Human (hD53) and Mouse (mD52). Genomics 35, 523-532. 40. Rybak, J.N., Scheurer Sb Fau - Neri, D., Neri D Fau - Elia, G., and Elia, G. (2004). Purification of biotinylated proteins on streptavidin resin: a protocol for quantitative elution. Proteomics 4, 2296-2299. 41. Sivasankar, S., Subramaniam S Fau - Leckband, D., and Leckband, D. (1998). Direct molecular level measurements of the electrostatic properties of a protein surface. Proc. Natl. Acad. Sci. U.S.A. 95, 12961-12966. 42. Green, N.M. (1975). Avidin. Adv. Protein Chem. 29, 85-133. 43. Hirsch, J.D., Eslamizar, L., Filanoski, B.J., Malekzadeh, N., Haugland, R.P., Beechem, J.M., and Haugland, R.P. (2002). Easily reversible desthiobiotin binding to streptavidin, avidin, and other biotin-binding proteins: uses for protein labeling, detection, and isolation. Anal. Biochem. 308, 343-357. 44. Sivagnanam, V., Sayah, A., Vandevyver, C., and Gijs, M.A.M. (2008). Micropatterning of protein-functionalized magnetic beads on glass using electrostatic self-assembly. Sens. Actuators, B. 132, 361-367. 45. Gylys, K.H., Fein, J.A., Yang, F., and Cole, G.M. (2004). Enrichment of presynaptic and postsynaptic markers by size-based gating analysis of synaptosome preparations from rat and human cortex. Cytometry A 60, 90-96. 46. Gylys, K.H., Fein, J.A., Yang, F., Miller, C.A., and Cole, G.M. (2007). Increased cholesterol in Abeta-positive nerve terminals from Alzheimer's disease cortex. Neurobiol. Aging 28, 8-17. 47. Wang, B.Y. (2014). Analysis of synaptic tau protein localization by immunofluorescence microscopy and flow cytometry. Master Thesis. (National Taiwan University). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52925 | - |
dc.description.abstract | 阿茲海默症是最常見的失智症,是一種β-澱粉樣蛋白和tau蛋白錯誤折疊的病症,也是一種失去神經元和突觸的神經退化性疾病。比起神經細胞死亡,阿茲海默症患者腦中神經末端的失去和認知功能退化更有相關性。在早期認知衰退裡,突觸功能的失調是一個關鍵。因此神經科學家使用突觸體的分離方法去研究突觸的失功能,試著找出它和阿茲海默症的關係。流式細胞術已經被許多研究團隊應用在研究突觸上,然而在突觸體的免疫染色步驟存在著一個主要的技術障礙。
傳統上突觸體的免疫染色有許多離心步驟,這些離心步驟對脆弱的胞器有累積性的傷害,這會導致大量樣品流失和訊號不穩定。我們藉由以脫硫生物素修飾突觸體表面發展出新方法以達到避免重覆離心的問題。有修飾上脫硫生物素的突觸體可被有塗佈鏈霉親合素的表面給捕捉。吸附在表面的突觸體可在溫和的條件下進行免疫染色,同時染色完還可使用倒立式顯微鏡觀察。以生物素競爭掉脫硫生物素可將突觸體從塗佈鏈霉親合素的表面給釋放出來以便於流式細胞儀的分析。這個捕捉和釋放的策略使得我們能以最少樣品量做高通量的突觸分析。 目前我們使用了三種不同的試劑,第一種是Sulfo-NHS-SS-Biotin,由於在釋放突觸體時須使用還原劑切斷雙硫鍵,同時抗體的雙硫鍵也被切斷而影響免疫染色效果,所以此試劑不適合用來修飾突觸體。第二種NHS-Desthiobiotin在釋放突觸體過程是以生物素競爭而釋放。此試劑除了修飾突觸體表面外還會進到突觸體內修飾了抗原決定位,在免疫染色時抗體可能無法辨認被修飾過的抗原決定位,導致免疫染色效果不佳。第三種Sulfo-NHS-LC-Desthiobiotin具有亞硫酸根不會穿透細胞膜進到突觸體內修飾抗原決定位,在免疫染色上有修飾過之突觸體優於未修飾突觸體,但捕捉到的突觸體數量仍是偏少,脫硫生物素和鏈霉親合素的親和力只有生物素和鏈霉親合素的親和力的千分之一,親和力是相對弱的,此外在免疫染色過程鏈霉親合素連同突觸體可能整個脫落,抑或是此試劑分子之短連接鏈尚未達到最佳化條件,所以能夠捕捉到的突觸體數量不多。綜合上述,利用脫硫生物素修飾突觸體表面發展出的新方法,還有需要改進的空間。 | zh_TW |
dc.description.abstract | Alzheimer’s disease (AD) is the most common type of dementia, a protein misfolding disorder of beta amyloid and tau, and a neurodegenerative disease characterized by the loss of neurons and synapses. Loss of synaptic terminals in AD brains exhibits stronger correlations with decreased cognitive function than cell death. Disruption of synaptic function is a key event in early cognitive decline. Consequently, neuroscientists used enriched preparation of synaptosomes to study synapse dysfunction and try to find its relationship with the disease. Flow cytometry has been applied to the study of synapses by several research groups. However, the immunostaining procedure of synaptosomes prior to flow cytometry represents a major technical obstacle.
Conventional immunostaining of synaptosomes for flow cytometry involves many sedimentation steps which lead to cumulative damage of these fragile organelles, resulting in significant sample loss and signal variability. We devised a method to circumvent this issue by modifying synaptic surfaces with desthiobiotin, which can be captured in wells with streptavidin-coated bottoms. Surfaced-attached synaptosomes can be immunostained under gentle conditions and imaged with inverted microscopes. Elution with biotin releases synaptic terminals from the bottom surface for flow cytometry analysis. This capture-and-release strategy enables high-throughput analysis of brain synapses with minimal tissue samples. So far, we tried three different surface modification reagents. First, we tried Sulfo-NHS-SS-Biotin(Sulfo-N-hydroxysuccinimide-Disulfide-Biotin). However, this led to poor immunostaning because the reducing agents used to cleave the disulfide bond and release the synaptosomes will also cleave the disulfide bonds of antibodies. As a result it was not suitable for modifying synaptosomes. The second modifying reagent we used was NHS-Desthiobiotin(N-hydroxysuccinimide-Desthiobiotin), as the releasing process could be accomplished by competitive elution with biotin. However, this reagent was also found to be unsuitable. It might have modified both the surface of synaptosomes and the epitopes inside the synaptosomes due to its membrane permeability, leading to poor immunostaining. The last one we used was Sulfo-NHS-LC-Desthiobiotin(Sulfo-N-hydroxysuccinimide-Long Chain-Desthiobiotin), which contained a sulfite group and thus was impermeable to cell membrane. This produced higher levels of immunostaining of labeled synaptosomes captured in wells compared to the unlabeled control group. However, the amount of captured synaptosomes was still not satisfying. This may be due to comparatively low binding affinity between desthiobiotin and streptavidin, which is only 1/1000 of that between biotin and streptavidin, or due to the detachment of streptavidin from the plate surface, or perhaps the short linker was sub-optimal for capturing. To sum up, this capture-and-release strategy still requires further optimization. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T16:34:19Z (GMT). No. of bitstreams: 1 ntu-104-R02223208-1.pdf: 6316236 bytes, checksum: 4b97bd6dc6e55d59e46a8551d4effe0b (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS v 圖片清單 viii 表格清單 x 縮寫表 xi 第 1 章 緒論 1 1.1 研究動機……………………… 1 1.2 大腦細胞類型 2 1.3 化學突觸 3 1.4 阿茲海默症及突觸功能異常 8 1.5 突觸體的純化 9 1.6 流式細胞術對突觸體的分析及分選 10 1.7 突觸體的生物素及脫硫生物素修飾和免疫染色 13 第 2 章 實驗材料及方法 18 2.1 實驗材料 18 2.1.1 鼠腦 18 2.1.2 第一抗體 18 2.1.3 第二抗體 18 2.1.4 各式緩衝液 19 2.1.5 化學藥品、耗材 19 2.2 實驗儀器 20 2.2.1 Zeiss Axio Observer Z1 20 2.2.2 BD FACSCantoII 21 2.3 突觸體的分離及純化 22 2.3.1 Synaptoneurosome的分離及純化 22 2.3.2 Synaptosome的分離及純化 23 2.4 Synaptoneurosome 的免疫染色 24 2.5 Synaptosome的生物素修飾及免疫染色 25 2.5.1 生物素修飾 25 2.5.2 免疫染色 26 2.6 光學影像處理 28 2.7 流式細胞術 29 第 3 章 實驗結果與討論 30 3.1 Synaptoneurosome的免疫染色 30 3.1.1 以聚苯乙烯螢光標準微粒子最佳化流式細胞儀分析條件 30 3.1.2 Synaptoneurosome之單一染色 32 3.1.3 Synaptoneurosome之雙重染色 37 3.1.4 離心速率和次數對突觸體的影響 38 3.2 Synaptosome之表面修飾及染色 39 3.2.1 以Sulfo-NHS-SS-Biotin修飾突觸體之免疫染色 39 3.2.2 以NHS-Desthiobiotin修飾突觸體之免疫染色 40 3.2.3 以Sulfo-NHS-LC-Desthiobiotin修飾突觸體之免疫染色 42 第 4 章 結論 47 4.1 Synaptoneurosome之免疫染色 47 4.2 Synaptosome之表面修飾及免疫染色 47 參考文獻 49 附錄 55 1.1 Synaptosome的純化及生物素/脫硫生物素修飾 55 1.2 Synaptoneurosome的純化 58 1.3 表面修飾生物素/脫硫生物素之synaptosome免疫染色 61 1.4 APTES之塗佈流程 63 1.5 Synaptoneurosome 之免疫染色 64 1.6 4% paraformaldehyde之製備 66 | |
dc.language.iso | zh-TW | |
dc.title | 以流式細胞儀進行高通量的神經突觸分析 | zh_TW |
dc.title | Development of high-throughput flow cytometry for synaptosomes | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳平(Richard P. Cheng),黃人則(Joseph Jen-Tse Huang) | |
dc.subject.keyword | 阿茲海默症,突觸體,鏈霉親合素,生物素,脫硫生物素,流式細胞術, | zh_TW |
dc.subject.keyword | Alzheimer’s disease,synaptosome,streptavidin,biotin,desthiobiotin,flow cytometry, | en |
dc.relation.page | 66 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-08-12 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 化學研究所 | zh_TW |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 6.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。